Page | 1

ALGEBRA I // MODUL SEQUENCES – 1.3	Е 1		1.3
READY, SET, GO!	Name	Period	Date

READY

A) Use the given table to identify the indicated value for n. B) Then using the value for n that you determined in A, use the table to find the indicated value for B.

n	1	2	3	4	5	6	7	8	9	10
f (n)	-8	-3	2	7	12	17	22	27	32	37

- 1. A) When f(n) = 12, what is the value of n?
 - B) What is the value of f(n-1)?
- 2. A) When f(n) = 17, what is the value of n?
 - B) What is the value of f(n-1)?
- 3. A) When f(n) = 32, what is the value of n?
 - B) What is the value of f(n + 1)?

- 4. A) When f(n) = 2, what is the value of n?
 - B) What is the value of f(n + 3)?
- 5. A) When f(n) = 27, what is the value of n?
 - B) What is the value of f(n-6)?
- 6. A) When f(n) = -8, what is the value of n?
 - B) What is the value of f(n + 9)?

SET

Use the given information to decide which equation will be the easiest to use to find the indicated value. Find the value and explain your choice.

7. Explicit equation: y = 3x + 7

Recursive: now =

previous	term	+	3	

term #	1	2	3	4
value	10	13	16	

Find the value of the 4th term.

Explanation:

8. Explicit equation: y = 3x + 7Recursive: now =previous term + 3

term #	1	2	3	4
value	10	13	16	

Find the value of the 50^{th} term.

Explanation:

Page | 2

ALGEBRA I // MODULE 1 SEQUENCES – 1.3

 The value of the 8th term is 78. The sequence is increasing by 10 at each step.

Explicit equation: y = 10x - 2Recursive: now =previous term + 10

Find the value of the 20th term.

Explanation:

11. The value of the 4th term is 80. The sequence is being doubled at each step.

> Explicit equation: $y = 5(2^x)$ Recursive: $now = previous \ term \cdot 2$

Find the value of the 5th term.

Explanation:

10. The value of the 8th term is 78. The sequence is increasing by 10 at each step.

Explicit equation: y = 10x - 2Recursive: now =previous term + 10

Find the value of the 9th term.

Explanation:

12. The value of the 4th term is 80. The sequence is being doubled at each step.

Explicit equation: $y = 5(2^x)$ Recursive: $now = previous \ term \cdot 2$

Find the value of the 7th term.

Explanation:

GO

Evaluate the following equations when $x = \{1, 2, 3, 4, 5\}$. Organize your inputs and outputs into a table of values for each equation. Let x be the input and y be the output. $13. y = 4^x$ $14. y = (-3)^x$ $15. y = -3^x$ $16. y = 10^x$

	-	2		-		-	
x	у	x	у	x	y	x	y
Input	Output	Input	Output	Input	Output	Input	Output
1		1		1		1	
2		2		2		2	
3		3		3		3	
4		4		4		4	
5		5		5		5	

17. If $f(n) = 5^n$, what is the value of f(4)?

Mathematics Vision Project

Licensed under the Creative Commons Attribution CC BY 4.0 *mathematicsvisionproject.org*

