READY
Given that $f(n)=8 n-3$ and $g(n)=3 n-10$, evaluate the following function with the indicated value.

1. $f(5)=$
2. $f(-4)=$
3. $f(0)=$
4. $f(1)=$
5. $g(5)=$
6. $g(-4)=$
7. $g(0)=$
8. $g(1)=$

## Complete each table by looking for the pattern.

9. 

| Term | $1^{\text {st }}$ | $2^{\text {nd }}$ | $3^{\text {rd }}$ | $4^{\text {th }}$ | $5^{\text {th }}$ | $6^{\text {th }}$ | $7^{\text {th }}$ | $8^{\text {th }}$ |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Value | 2 | 4 | 8 | 16 | 32 |  |  |  |

10. 

| Term | $1^{\text {st }}$ | $2^{\text {nd }}$ | $3^{\text {rd }}$ | $4^{\text {th }}$ | $5^{\text {th }}$ | $6^{\text {th }}$ | $7^{\text {th }}$ | $8^{\text {th }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Value | 66 | 50 | 34 | 18 |  |  |  |  |

11. 

| Term | $1^{\text {st }}$ | $2^{\text {nd }}$ | $3^{\text {rd }}$ | $4^{\text {th }}$ | $5^{\text {th }}$ | $6^{\text {th }}$ | $7^{\text {th }}$ | $8^{\text {th }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Value | 160 | 80 | 40 | 20 |  |  |  |  |

12. 

| Term | $1^{\text {st }}$ | $2^{\text {nd }}$ | $3^{\text {rd }}$ | $4^{\text {th }}$ | $5^{\text {th }}$ | $6^{\text {th }}$ | $7^{\text {th }}$ | $8^{\text {th }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Value | -9 | -2 | 5 | 12 |  |  |  |  |

SET
In the pictures below, each square represents one tile.


Step 3

Step 4

Step 5


Step 2


Step 1
13. Draw step 4 and step 5.

The students in a class were asked to find the number of tiles in a figure by describing how they saw the pattern of tiles changing at each step. Match each student's way of describing the pattern with the appropriate equation below. Note that " $s$ " represents the step number and " $n$ " represents the number of tiles.
(a) $n=(2 s-1)+(s-1)$
(b) $n=3 s-2$
(c) $n=s+2(s-1)$
14. Dan explained that the middle "tower" is always the same as the step number. He also pointed out that the 2 arms on each side of the "tower" contain one less block than the step number.
15. ___Sally counted the number of tiles at each step and made a table. She explained that the number of tiles in each figure was always 3 times the step number minus 2.

| step number | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| number of tiles | 1 | 4 | 7 | 10 | 13 | 16 |

16. ___ Nancy focused on the number of blocks in the base compared to the number of blocks above the base. She said the number of base blocks were the odd numbers starting at 1 . And the number of tiles above the base followed the pattern $0,1,2,3,4$. She organized her work in the table at the right.

| Step number | \# in base + \#on top |
| :---: | :---: |
| 1 | $1+0$ |
| 2 | $3+1$ |
| 3 | $5+2$ |
| 4 | $7+3$ |
| 5 | $9+4$ |

GO
Write each expression using an exponent.
17. $6 \times 6 \times 6 \times 6 \times 6$
$18.4 \times 4 \times 4$
19. $15 \times 15 \times 15 \times 15$
20. $\frac{1}{3} \times \frac{1}{3}$
A) Write each expression in expanded form. B) Then calculate the value of each expression.
21. $7^{1}$
23. $5^{3}$
25. $7(2)^{3}$
27. $3(5)^{4}$
22. $3^{2}$
24. $10^{4}$
26. $10\left(8^{2}\right)$
28. $16\left(\frac{1}{2}\right)^{3}$

