Find the intersection(s) of the graphs of the two equations.

1) $y=2 x^{2}+20 x+44$
$y=2 x+8$
$y=2\left(x^{2}+10 x \quad\right)+44$
$\left(\frac{10}{2}\right)^{2}=(5)^{2}=25$
$y=2\left(x^{2}+10 x+25\right)+44-50$
$y=2(x+5)^{2}-6$
$y=\frac{2}{1} x+8$
The graphs intersect in two places.
$(-6,-4)$ and $(-3,2)$
2) $y=-2 x^{2}+8 x-12$
$y=\frac{1}{2} x-5$
$y=-2\left(x^{2}-4 x \quad\right)-12$
$\left(\frac{-4}{2}\right)^{2}=(-2)^{2}=4$
$y=-2\left(x^{2}-4 x+4\right)-12+8$
$y=-2(x-2)^{2}+4$
$y=\frac{1}{2} x-5$
The graphs intersect in one place. $(2,-4)$

3) $y=x^{2}+12 x+36$
$y=-2 x-12$
$y=\left(x^{2}+12 x \quad\right)+36$
$\left(\frac{12}{2}\right)^{2}=(6)^{2}=36$
$y=\left(x^{2}+12 x+36\right)+36-36$
$y=(x+6)^{2}$
$y=\frac{-2}{1} x-12$
The graphs intersect in two places. $(-8,4)$ and $(-6,0)$
4) $y=x^{2}-4$
$y=-x-2$
$y=x^{2}-4$
$y=\frac{-1}{1} x-2$
The graphs intersect in two places. $(-2,0)$ and $(1,-3)$

