KEY CO	NCEPT	Difference of Squares
Symbols	$a^2 - b^2 = (a + b)(a - b)$ or $(a - b)(a + b)$	
Examples	$x^2 - 9 = (x + 3)(x - 3)$ or $(x - 3)(x + 3)$	

In order to use this rule, we must know somethings about perfect squares.

 $1^2 = 1, 2^2 = 4, 3^2 = 9, 4^2 = 16, 5^2 = 25, 6^2 = 36, 7^2 = 49, 8^2 = 64, 9^2 = 81, 10^2 = 100,$ $11^2 = 121, 12^2 = 144, 13^2 = 169, 14^2 = 196, 15^2 = 225, \text{etc.}$

The numbers 1, 4, 9, 16, 25, 36, 49, 81, 100, 121, 144, 169, 196, 225, etc. are known as perfect squares.

**It is important when using the difference of squares rule that there is a difference (subtraction) between the two squares. If it is a sum (addition), it is not factorable and is prime.

Example: Factor the Difference of Squares

Factor each binomial.

a. $n^2 - 25$ $n^2 - 25 = n^2 - 5^2$ Write in the form $a^2 - b^2$. = (n + 5)(n - 5) Factor the difference of squares. **b.** $36x^2 - 49y^2$ $36x^2 - 49y^2 = (6x)^2 - (7y)^2$ $36x^2 = 6x \cdot 6x$ and $49y^2 = 7y \cdot 7y$ = (6x + 7y)(6x - 7y) Factor the difference of squares.

c.
$$48a^3 - 12a$$

If the terms of a binomial have a common factor, the GCF should be factored out first before trying to apply any other factoring technique.

$$48a^{3} - 12a = 12a(4a^{2} - 1)$$

$$= 12a[(2a) - 1^{2}]$$

$$= 12a(2a + 1)(2a - 1)$$
The GCF of $48a^{3}$ and $-12a$ is $12a$.
$$4a^{2} = 2a \cdot 2a$$
 and $1 = 1 \cdot 1$
Factor the difference of squares.

Check your progress:

1) $81 - t^2$

We want to start by rewriting the binomial so that each term is a square.

 $(9)^2 - (t)^2$ **We know that $9^2 = 81$ and $1^2 = 1$.

To factor this, we then use 9 and t and write one factor as the sum of those two things and one factor as the difference of those two things.

$$(9+t)(9-t)$$
 **This is our solution.

2)
$$64g^2 - h^2$$

We want to start by rewriting the binomial so that each term is a square.

$$(8g)^2 - (h)^2$$
 **We know that $8^2 = 64$ and $1^2 = 1$

To factor this, we then use 8g and h and write one factor as the sum of those two things and one factor as the difference of those two things.

$$(8g+h)(8g-h)$$
 **This is our solution.

3) $4x^2 + 25$

This looks like an addition between the two terms. Even if I switch the order of the terms, it remains a sum of squares. Therefore, this is unfactorable and prime.

Prime **This is our solution.

4) $-4y^3 + 9y$

This looks like an addition between the two terms, but I can switch the order of the terms so that it becomes a subtraction.

$$9y - 4y^3$$

If we look at this binomial, we can see that both terms are divisible by y. So, let's factor that out, first.

$$y\left(\frac{9y}{y} - \frac{4y^3}{y}\right)$$

 $y(9-4y^2)$

We sort of ignore the y out front and we rewrite the binomial in parentheses so that each term is a square.

$$y((3)^2 - (2y)^2)$$
 **We know that $2^2 = 4$ and $3^2 = 9$.

To factor this, we then use 3 and 2y and write one factor as the sum of those two things and one factor as the difference of those two things.

y(3+2y)(3-2y) **This is our solution.

Example: Apply a Factoring Technique More Than Once

Factor
$$x^4 - 81$$
.
 $x^4 - 81 = [(x^2)^2 - 9^2]$
 $= (x^2 + 9)(x^2 - 9)$
 $= (x^2 + 9)(x^2 - 3^2)$
 $= (x^2 + 9)(x^2 - 3^2)$
 $x^2 = x \cdot x \text{ and } 9 = 3 \cdot 3$
 $= (x^2 + 9)(x + 3)(x - 3)$
Factor the difference of squares.

Check your progress:

1) $32x^4 - 2$

If we look at this binomial, we can see that both terms are divisible by 2. So, let's factor that out, first.

$$2\left(\frac{32x^4}{2} - \frac{2}{2}\right)$$

 $2(16x^4 - 1)$

Rewrite the binomial in parentheses so that each term is a square.

$$2((4x^2)^2 - (1)^2)$$
 **We know that $(x^2)^2 = x^4$, $4^2 = 16$ and $1^2 = 1$.

Factor the binomials in parentheses:

$$2(4x^2+1)(4x^2-1)$$

At this point, we notice that one of our factors is again a difference of squares $(4x^2 - 1)$. $4x^2 + 1$ is a sum of squares and is not factorable.

Rewrite the term that is factorable so that each term of the binomials is a square. We leave everything else alone.

$$2(4x^2 + 1)((2x)^2 - (1)^2)$$

Then we factor the last binomial.

 $2(4x^2 + 1)(2x + 1)(2x - 1)$ **This is our solution.

2) $4a^4 - 4b^4$

If we look at this binomial, we can see that both terms are divisible by 4. So, let's factor that out, first.

$$4\left(\frac{4a^4}{4}-\frac{4b^4}{4}\right)$$

$4(a^4 - b^4)$

Rewrite the binomial in parentheses so that each term is a square.

$$4((a^2)^2 - (b^2)^2)$$
 **We know that $(a^2)^2 = a^4$ and $(b^2)^2 = b^4$.

Factor the binomials in parentheses:

$$4(a^2+b^2)(a^2-b^2)$$

At this point, we notice that one of our factors is again a difference of squares $(a^2 - b^2)$. $a^2 + b^2$ is a sum of squares and is not factorable.

Rewrite the term that is factorable so that each term of the binomials is a square. We leave everything else alone.

 $4(a^2 + b^2)((a)^2 - (b)^2)$

Then we factor the last binomial.

 $4(a^2 + b^2)(a + b)(a - b)$ **This is our solution.

Example: Apply Several Different Factoring Techniques

Factor
$$5x^3 + 15x^2 - 5x - 15$$
 $5x^3 + 15x^2 - 5x - 15$ Original polynomial $= 5(x^3 + 3x^2 - x - 3)$ Factor out the GCF. $= 5[(x^3 - x) + (3x^2 - 3)]$ Group terms with common factors. $= 5[x(x^2 - 1) + 3(x^2 - 1)]$ Factor each grouping. $= 5(x^2 - 1)(x + 3)$ $x^2 - 1$ is the common factor. $= 5(x + 1)(x - 1)(x + 3)$ Factor the difference of squares, $x^2 - 1$, into $(x + 1)(x - 1)$.

Check your progress:

1) $2x^3 + x^2 - 50x - 25$

Remember that to factor a polynomial with four terms, we split the polynomial in half and treat it like two binomials we are factoring separately.

$$2x^3 + x^2 - 50x - 25$$
)

The first two terms are divisible by x^2 . The last two terms are divisible by -25.

$$x^{2} \left(\frac{2x^{3}}{x^{2}} + \frac{x^{2}}{x^{2}}\right) - 25 \left(\frac{-50x}{-25} + \frac{-25}{-25}\right)$$
$$x^{2} (2x+1) - 25 (2x+1)$$

Both terms have a (2x + 1), so we can factor that out.

$$(2x+1)\left(\frac{x^2(2x+1)}{2x+1} - \frac{25(2x+1)}{2x+1}\right)$$
$$(2x+1)(x^2 - 25)$$

At this point, we should notice that one of our factors is a difference of squares $(x^2 - 25)$.

Rewrite the term that is factorable so that each term of the binomials is a square. We leave everything else alone.

$$(2x+1)((x)^2-(5)^2)$$

Then we factor the last binomial.

(2x+1)(x+5)(x-5) **This is our solution.

2) $x^3 - 3x^2 - 9x + 27$

Remember that to factor a polynomial with four terms, we split the polynomial in half and treat it like two binomials we are factoring separately.

$$x^3 - 3x^2 - 9x + 27$$
)

The first two terms are divisible by x^2 . The last two terms are divisible by -9.

$$x^{2}\left(\frac{x^{3}}{x^{2}} - \frac{3x^{2}}{x^{2}}\right) - 9\left(\frac{-9x}{-9} + \frac{27}{-9}\right)$$
$$x^{2}(x-3) - 9(x-3)$$

Both terms have an (x - 3), so we can factor that out.

$$(x-3)\left(\frac{x^2(x-3)}{x-3} - \frac{9(x-3)}{x-3}\right)$$

$$(x-3)(x^2-9)$$

At this point, we should notice that one of our factors is a difference of squares $(x^2 - 9)$.

Rewrite the term that is factorable so that each term of the binomials is a square. We leave everything else alone.

$$(x-3)((x)^2-(3)^2)$$

Then we factor the last binomial.

$$(x-3)(x+3)(x-3)$$

Because two of our terms are exactly the same, we can write them as a square.

 $(x-3)^2(x+3)$ **This is our solution.

Example: Solve Equations by Factoring

In the equation $y = x^2 - \frac{9}{16}$, which is a value of *x* when y = 0?

 $y = x^2 - \frac{9}{16}$ Original equation $0 = x^2 - \frac{9}{16}$ Replace y with 0. $0 = x^2 - \left(\frac{3}{4}\right)^2$ $x^2 = x \cdot x$ and $\frac{9}{16} = \frac{3}{4} \cdot \frac{3}{4}$ $0 = \left(x + \frac{3}{4}\right)\left(x - \frac{3}{4}\right)$ Factor the difference of squares. $0 = x + \frac{3}{4}$ or $0 = x - \frac{3}{4}$ Zero Product Property $-\frac{3}{4} = x$ Solve each equation.

Check your progress:

1)
$$4x^2 = 25$$

We will start by getting one side of the equation to equal zero.

$$4x^2 = 25$$

$$-25 - 25$$

 $4x^2 - 25 = 0$ **Notice that I am not combining these because they are not like terms.

Rewrite the binomial so that each term is a square.

$$(2x)^2 - (5)^2 = 0$$

Factor the difference of squares:

$$(2x+5)(2x-5) = 0$$

Finally, we use the zero-product property to solve.

$$(2x+5)(2x-5) = 0$$

We have two things ((2x + 5) and (2x - 5)) that are multiplied together and the product is zero. That means 2x + 5 = 0 or 2x - 5 = 0.

So, we write both of those equations down and solve.

2x + 5 = 0	or	2x - 5 = 0
-5 - 5		+5 +5
2x = -5	or	2x = 5

$$\frac{2x}{2} = \frac{-5}{2}$$
 or $\frac{2x}{2} = \frac{5}{2}$
 $x = -\frac{5}{2}$ or $x = \frac{5}{2}$

The two solutions are $x = -\frac{5}{2}$ or $x = \frac{5}{2}$. **These are our solutions, but it is always a good idea to double-check our solutions and see if we have the correct ones.

Check:

Replace x with -5/2Replace x with 5/2
$$4x^2 = 25$$
 $4x^2 = 25$ $4\left(-\frac{5}{2}\right)^2 = 25$ $4\left(\frac{5}{2}\right)^2 = 25$ $4\left(\frac{25}{4}\right) = 25$ $4\left(\frac{25}{4}\right) = 25$ $\frac{100}{4} = 25$ $\frac{100}{4} = 25$ $25 = 25$ $25 = 25$

Because both equations are true, we know we have found the correct solutions.

2) $18x^3 = 50x$

We will start by getting one side of the equation to equal zero.

$$18x^{3} = 50x$$

$$-50x - 50x$$

$$18x^{3} - 50x = 0$$
**Notice that I am not combining these because they are not like
terms.

The binomial on the left has two terms are divisible by 2x. So, let's factor that out, first.

$$2x\left(\frac{18x^3}{2x} - \frac{50x}{2x}\right) = 0$$

$$2x(9x^2 - 25) = 0$$

Rewrite the binomial in parentheses so that each term is a square.

$$2x((3x)^2 - (5)^2) = 0$$

Factor the difference of squares:

2x(3x+5)(3x-5) = 0

Finally, we use the zero-product property to solve.

$$2x(3x+5)(3x-5) = 0$$

We have three things (2x, (3x + 5) and (3x - 5)) that are multiplied together and the product is zero. That means 2x = 0, 3x + 5 = 0 or 3x - 5 = 0.

So, we write all three of those equations down and solve.

$\frac{2x}{2} = \frac{0}{2}$ - 5 - 5 +	
	-5 + 5
x = 0 or $3x = -5$ or 3	Bx = 5
$\frac{3x}{3} = \frac{-5}{3}$ or	$\frac{3x}{3} = \frac{5}{3}$
$x = -\frac{5}{3}$ or	$x = \frac{5}{3}$

The three solutions are $x = 0, x = -\frac{5}{3}$ or $x = \frac{5}{3}$. **These are our solutions, but it is always a

**These are our solutions, but it is always a good idea to double-check our solutions and see if we have the correct ones.

Check:

Replace x with 0	Replace x with $-5/3$	Replace x with $5/3$
$18x^3 = 50x$	$18x^3 = 50x$	$18x^3 = 50x$
$18(0)^3 = 50(0)$	$18\left(-\frac{5}{3}\right)^3 = 50\left(-\frac{5}{3}\right)$	$18\left(\frac{5}{3}\right)^3 = 50\left(\frac{5}{3}\right)$
18(0) = 0	$18\left(-\frac{125}{27}\right) = -\frac{250}{3}$	$18\left(\frac{125}{27}\right) = \frac{250}{3}$
0 = 0	$-\frac{2250}{27} = -\frac{250}{3}$	$\frac{2250}{27} = \frac{250}{3}$
	$-\frac{250}{3} = -\frac{250}{3}$	$\frac{250}{3} = \frac{250}{3}$

Because all three equations are true, we know we have found the correct solutions.