Example: Solve an Equation by Factoring

$$
\begin{aligned}
& \text { Solve } x^{2}+5 x-6=0 \text {. Check the solutions. } \\
& x^{2}+5 x-6=0 \quad \text { Original equation } \\
& (x-1)(x+6)=0 \quad \text { Factor. } \\
& x-1=0 \quad \text { or } \quad x+6=0 \quad \text { Zero Product Property } \\
& x=1 \quad x=-6 \quad \text { Solve each equation. }
\end{aligned}
$$

The roots are 1 and -6 . Check by substituting 1 and -6 for x in the original equation.

Check your progress:

$$
\text { 1) }-9 x+x^{2}=22
$$

We need to get one side of the equation equal to zero.
$-9 x+x^{2}=22$

$$
-22 \quad-22
$$

$-9 x+x^{2}-22=0$
Now, we need to put the polynomial on the left in standard form so that it is factorable.
$x^{2}-9 x-22=0$
Factor: $x^{2}-9 x-22=0$
Step 1: \quad Product $=1 \cdot-22=-22$

$$
\text { Sum }=-9
$$

${ }^{* *}$ We need to find numbers that multiply to -22 and add to -2 . Because the product is negative, one of the two factors must be negative. Because the sum is also negative, the larger factor must be negative.

Step 2:
Factors of -22: Sum of factors:
1, -22

$$
1+-22=-21
$$

2, -11

$$
2+-11=-9
$$

2 and -11 are the factors that will make a product of -22 and a sum of -9 .
Step 3:

$$
\begin{gathered}
x^{2}-9 x-22=0 \\
x^{2}+2 x-11 x-22=0
\end{gathered}
$$

Step 4:
$\left.x^{2}+2 x\right\}-11 x-22=0$
The first two terms are divisible by x. The last two terms are divisible by -11 .
$\left.x\left(\frac{x^{2}}{x}+\frac{2 x}{x}\right)\right\}-11\left(\frac{-11 x}{-11}+\frac{-22}{-11}\right)=0$
$x(x+2)-11(x+2)=0$
Both terms have an $(x+2)$, so we can factor that out.
$(x+2)\left(\frac{x(x+2)}{x+2}-\frac{11(x+2)}{x+2}\right)=0$
$(x+2)(x-11)=0$

Finally, we use the zero-product property to solve.
$(x+2)(x-11)=0$
Either $x+2=0$ or $x-11=0$.

$$
\begin{array}{rcc}
x+2=0 & \text { or } & x-11=0 \\
-2-2 & & +11+11 \\
x=-2 & \text { or } & x=11
\end{array}
$$

The two solutions are $x=-2$ or $x=11$. **These are our solutions, but it is always a good idea to double-check our solutions and see if we have the correct ones.

Check:

Replace x with -2

$$
\text { Replace } \mathrm{x} \text { with } 11
$$

$$
\begin{aligned}
& -9 x+x^{2}=22 \\
& -9(-2)+(-2)^{2}=22 \\
& 18+4=22 \\
& 22=22
\end{aligned}
$$

$$
\begin{aligned}
& -9 x+x^{2}=22 \\
& -9(11)+(11)^{2}=22 \\
& -99+121=22 \\
& 22=22
\end{aligned}
$$

Because both equations are true, we know we have found the correct solutions.
2) $x^{2}+9=10 x$

We need to get one side of the equation equal to zero.

$$
\begin{aligned}
x^{2}+9= & 10 x \\
-10 x & -10 x
\end{aligned}
$$

$$
x^{2}-10 x+9=0 \quad * * \text { Put the }-10 \mathrm{x} \text { between the other two terms so that the polynomial }
$$ is in standard form.

Factor: $x^{2}-10 x+9=0$
Step 1: \quad Product $=1 \cdot 9=9$

$$
\text { Sum }=-10
$$

**We need to find numbers that multiply to 9 and add to -10 . Because the product is positive and the sum is negative, both factors must be negative.

Step 2:
Factors of -22: Sum of factors:
$-1,-9 \quad-1+-9=-10$
$-3,-3 \quad-3+-3=-6$
-1 and -9 are the factors that will make a product of 9 and a sum of -10 .
Step 3:

$$
\begin{gathered}
x^{2}-10 x+9=0 \\
x^{2}-1 x-9 x+9=0
\end{gathered}
$$

Step 4:
$\left.x^{2}-1 x\right\}-9 x+9=0$
The first two terms are divisible by x. The last two terms are divisible by -9 .
$\left.x\left(\frac{x^{2}}{x}-\frac{1 x}{x}\right)\right\}-9\left(\frac{-9 x}{-9}+\frac{9}{-9}\right)=0$
$x(x-1)-9(x-1)=0$
Both terms have an $(x-1)$, so we can factor that out.

$$
\begin{aligned}
& (x-1)\left(\frac{x(x-1)}{x-1}-\frac{9(x-1)}{x-1}\right)=0 \\
& (x-1)(x-9)=0
\end{aligned}
$$

Finally, we use the zero-product property to solve.
$(x-1)(x-9)=0$
Either $x-1=0$ or $x-9=0$.

$$
\begin{array}{ccc}
x-1=0 & \text { or } & x-9=0 \\
+1+1 & & +9+9 \\
x=1 & \text { or } & x=9
\end{array}
$$

The two solutions are $x=1$ or $x=9$.
**These are our solutions, but it is always a good idea to double-check our solutions and see if we have the correct ones.

Check:

$$
\begin{array}{ll}
\text { Replace } \mathrm{x} \text { with } 1 & \text { Replace } \mathrm{x} \text { with } 9 \\
x^{2}+9=10 x & x^{2}+9=10 x \\
(1)^{2}+9=10(1) & (9)^{2}+9=10(9) \\
1+9=10 & 81+9=90 \\
10=10 & 90=90
\end{array}
$$

Because both equations are true, we know we have found the correct solutions.

Example: Solve an Equation by Factoring

Solve $8 a^{2}-9 a-5=4-3 a$. Check the solutions.

$$
\begin{array}{rlrl}
8 a^{2}-9 a-5 & =4-3 a & & \text { Write the equation. } \\
8 a^{2}-6 a-9 & =0 & & \text { Rewrite so that one side equals } 0 . \\
(4 a+3)(2 a-3) & =0 & & \text { Factor the left side. } \\
4 a+3 & \text { or } & 2 a-3 & =0 \\
& & \text { Zero Product Property } \\
4 a & =-3 & 2 a & =3 \\
& & \text { Solve each equation. } \\
a & =-\frac{3}{4} & a & =\frac{3}{2}
\end{array}
$$

The roots are $-\frac{3}{4}$ and $\frac{3}{2}$.
CHECK Check each solution in the original equation.

$$
\begin{array}{rlrl}
8 a^{2}-9 a-5 & =4-3 a & 8 a^{2}-9 a-5 & =4-3 a \\
8\left(-\frac{3}{4}\right)^{2}-9\left(-\frac{3}{4}\right)-5 & \stackrel{?}{=} 4-3\left(-\frac{3}{4}\right) & 8\left(\frac{3}{2}\right)^{2}-9\left(\frac{3}{2}\right)-5 \stackrel{?}{=} 4-3\left(\frac{3}{2}\right) \\
\frac{9}{2}+\frac{27}{4}-5 & \stackrel{?}{=} 4+\frac{9}{4} & 18-\frac{27}{2}-5 \stackrel{?}{=} 4-\frac{9}{2} \\
\frac{25}{4} & =\frac{25}{4}
\end{array}, \quad \checkmark \quad-\frac{1}{2}=-\frac{1}{2} \quad \checkmark \quad
$$

Check your progress:

1) $6 x^{2}-7 x=7 x+12$

We need to get one side of the equation equal to zero.
$6 x^{2}-7 x=7 x+12$
$-7 x-7 x$
$6 x^{2}-14 x=12$
$-12 \quad-12$
$6 x^{2}-14 x-12=0$

Factor: $6 x^{2}-14 x-12=0$
Step 1: \quad Product $=6 \cdot-12=-72$

$$
\text { Sum }=-14
$$

**We need to find numbers that multiply to -72 and add to -14 . Because the product is negative, one of the factors must be negative. Because the sum is negative, the larger factor must be negative.

Step 2:
Factors of -72: Sum of factors:

1, -72
2, -36
3, -24
4, -18

$$
4+-18=-14
$$

$6,-12$
8, -9
$8+-9=-1$

4 and -18 are the factors that will make a product of -72 and a sum of -14 .

Step 3:

$$
6 x^{2}-14 x-12=0
$$

$6 x^{2}+4 x-18 x-20=0$

Step 4:
$6 x^{2}+4 x\{-18 x-12=0$
The first two terms are divisible by $2 x$. The last two terms are divisible by -6 .
$\left.2 x\left(\frac{6 x^{2}}{2 x}+\frac{4 x}{2 x}\right)\right\} 6\left(\frac{-18 x}{-6}+\frac{-12}{-6}\right)=0$
$2 x(3 x+2)-6(3 x+2)=0$
Both terms have an $(3 x+2)$, so we can factor that out.
$(3 x+2)\left(\frac{2 x(3 x+2)}{3 x+2}-\frac{6(3 x+2)}{3 x+2}\right)=0$
$(3 x+2)(2 x-6)=0$
At this point, we should recognize that the second binomial, $2 x-6$, has a common factor of 2 .
That means both terms are divisible by 2 . So, we should divide that out.
$2(3 x+2)\left(\frac{2 x}{2}-\frac{6}{2}\right)=0$
$2(3 x+2)(x-3)=0$

Finally, we use the zero-product property to solve.
$2(3 x+2)(x-3)=0$
Either $3 x+2=0$ or $x-3=0$. The 2 out front does not affect the problem since 2 cannot be equal to zero. So, we ignore the 2 out front.

$$
\begin{array}{rrr}
3 x+2=0 & \text { or } & x-3=0 \\
-2-2 & & +3+3 \\
3 x=-2 \text { or } & x=3 \\
\frac{3 x}{3}=\frac{-2}{3} & & \\
x=-\frac{2}{3} \text { or } & x=3
\end{array}
$$

The two solutions are $x=-\frac{2}{3}$ or $x=3$. **These are our solutions, but it is always a good idea to double-check our solutions and see if we have the correct ones.

Check:

Replace x with $-2 / 3$

$$
\begin{array}{ll}
6 x^{2}-14 x=12 & 6 x^{2}-14 x=12 \\
6\left(-\frac{2}{3}\right)^{2}-14\left(-\frac{2}{3}\right)=12 & 6(3)^{2}-14(3)=12 \\
6\left(\frac{4}{9}\right)+\frac{28}{3}=12 & 6(9)-42=12 \\
\frac{24}{9}+9 \frac{1}{3}=12 & 54-42=12 \\
\frac{8}{3}+9 \frac{1}{3}=12 & 12=12 \\
2 \frac{2}{3}+9 \frac{1}{3}=12 & \\
12=12 &
\end{array}
$$

Because both equations are true, we know we have found the correct solutions.
2) $-19 x+10 x^{2}=-7$

We need to get one side of the equation equal to zero.
$-19 x+10 x^{2}=-7$

$$
+7 \quad+7
$$

$-19 x+10 x^{2}+7=0$
Now, we need to put the polynomial on the left in standard form so that it is factorable.
$10 x^{2}-19 x+7=0$
Factor: $10 x^{2}-19 x+7=0$
Step 1: \quad Product $=10 \cdot 7=70$

$$
\text { Sum }=-19
$$

**We need to find numbers that multiply to 70 and add to -19 . Because the product is positive and the sum is negative, both factors must be negative.

Step 2:
Factors of 70: Sum of factors:
$-1,-70 \quad-1+-70=-71$
$-2,-35 \quad-2+-35=-37$
$-5,-14 \quad-5+-14=-19$
$-7,-10 \quad-7+-10=-17$
-5 and -14 are the factors that will make a product of 70 and a sum of -19 .
Step 3:

$$
\begin{gathered}
10 x^{2}-19 x+7=0 \\
10 x^{2} \overbrace{-5 x-14 x}+7=0
\end{gathered}
$$

Step 4:
$\left.10 x^{2}-5 x\right\} 14 x+7=0$
The first two terms are divisible by $5 x$. The last two terms are divisible by -7 .
$5 x\left(\frac{10 x^{2}}{5 x}-\frac{5 x}{5 x}\right)\left\{-7\left(\frac{-14 x}{-7}+\frac{7}{-7}\right)=0\right.$
$5 x(2 x-1)-7(2 x-1)=0$
Both terms have an $(2 x-1)$, so we can factor that out.
$(2 x-1)\left(\frac{5 x(2 x-1)}{2 x-1}-\frac{7(2 x-1)}{2 x-1}\right)=0$
$(2 x-1)(5 x-7)=0$

Finally, we use the zero-product property to solve.
$(2 x-1)(5 x-7)=0$
Either $2 x-1=0$ or $5 x-7=0$.

$$
\begin{array}{ccc}
2 x-1=0 & \text { or } & 5 x-7=0 \\
+1+1 & & +7+7 \\
2 x=1 & \text { or } & 5 x=7 \\
\frac{2 x}{2}=\frac{1}{2} & \text { or } & \frac{5 x}{5}=\frac{7}{5} \\
x=\frac{1}{2} & \text { or } & x=\frac{7}{5}
\end{array}
$$

The two solutions are $x=\frac{1}{2}$ or $x=\frac{7}{5} . \quad * *$ These are our solutions, but it is always a good idea to double-check our solutions and see if we have the correct ones.

Check:

Replace x with $1 / 2$

$$
\begin{aligned}
& -19 x+10 x^{2}=-7 \\
& -19\left(\frac{1}{2}\right)+10\left(\frac{1}{2}\right)^{2}=-7 \\
& -\frac{19}{2}+10\left(\frac{1}{4}\right)=-7 \\
& -9 \frac{1}{2}+\frac{10}{4}=-7 \\
& -9 \frac{1}{2}+\frac{5}{2}=-7
\end{aligned}
$$

Replace x with $7 / 5$

$$
-19 x+10 x^{2}=-7
$$

$$
-19\left(\frac{7}{5}\right)+10\left(\frac{7}{5}\right)^{2}=-7
$$

$$
-\frac{133}{5}+10\left(\frac{49}{25}\right)=-7
$$

$$
-26 \frac{3}{5}+\frac{490}{25}=-7
$$

$$
-26 \frac{3}{5}+\frac{98}{5}=-7
$$

$-9 \frac{1}{2}+2 \frac{1}{2}=-7$
$-26 \frac{3}{5}+19 \frac{3}{5}=-7$
$-7=-7$
$-7=-7$

Because both equations are true, we know we have found the correct solutions.

