4 - 3 = 1

Example: Add Polynomials

Find
$$(3x^2 - 4x + 8) + (2x - 7x^2 - 5)$$
.

Method 1 Horizontal

$$(3x^{2} - 4x + 8) + (2x - 7x^{2} - 5)$$

$$= [3x^{2} + (-7x^{2})] + (-4x + 2x) + [8 + (-5)]$$
 Group like terms.
$$= -4x^{2} - 2x + 3$$
 Add like terms.

Method 2 Vertical

$$3x^2 - 4x + 8$$

$$(+) -7x^2 + 2x - 5$$

$$-4x^2 - 2x + 3$$
Notice that terms are in descending order with like terms aligned.

Check your progress:

1.
$$(5x^2 - 3x + 4) + (6x - 3x^2 - 3)$$

Because there is an addition between the parentheses, we can drop them:

$$5x^2 - 3x + 4 + 6x - 3x^2 - 3$$

Add like terms:
$$5x^2 - 3x^2 = 2x^2$$
 $-3x + 6x = 3x$

$$2x^2 + 3x + 1$$

Example: Subtract Polynomials

Find
$$(3n^2 + 13n^3 + 5n) - (7n + 4n^3)$$
.

Method 1 Horizontal

Subtract $7n + 4n^3$ by adding its additive inverse.

$$(3n^2 + 13n^3 + 5n) - (7n + 4n^3)$$

= $(3n^2 + 13n^3 + 5n) + (-7n - 4n^3)$ The additive inverse of $7n + 4n^3$
is $-7n - 4n^3$.
= $3n^2 + [13n^3 + (-4n^3)] + [5n + (-7n)]$ Group like terms.
= $3n^2 + 9n^3 - 2n$ Combine like terms.

Method 2 Vertical

Align like terms in columns and subtract by adding the additive inverse.

$$3n^2 + 13n^3 + 5n$$
 $3n^2 + 13n^3 + 5n$ (+) $-4n^3 - 7n$ $3n^2 + 9n^3 - 2n$

Thus, $(3n^2 + 13n^3 + 5n) - (7n + 4n^3) = 3n^2 + 9n^3 - 2n$ or, arranged in descending order, $9n^3 + 3n^2 - 2n$.

Check your progress:

1.
$$(4x^3 - 3x^2 + 6x - 4) - (-2x^3 + x^2 - 2)$$

Because there is a subtraction between the parentheses, we must distribute the negative through the second parentheses.

$$4x^3 - 3x^2 + 6x + 2x^3 - x^2 + 2$$

Add like terms:
$$4x^3 + 2x^3 = 6x^3$$
 $-3x^2 - x^2 = -4x^2$ 6x and 2 have no like term

$$6x^3 - 4x^2 + 6x + 2$$

Example: Polynomials

EDUCATION The total number of public school teachers T consists of two groups, elementary E and secondary S. From 1992 through 2003, the number (in thousands) of secondary teachers and total teachers could be modeled by the following equations, where n is the number of years since 1992.

$$S = 29n + 949$$
 $T = 58n + 2401$

a. Find an equation that models the number of elementary teachers *E* for this time period.

Subtract the polynomial for *S* from the polynomial for *T*.

Total
$$58n + 2401$$
 $-$ Secondary $(-) 29n + 949$ Add the opposite. $(+) -29n - 949$ $29n + 1452$

An equation is E = 29n + 1452.

b. Use the equation to predict the number of elementary teachers in 2015.

The year 2015 is 2015 - 1992 or 23 years after the year 1992. If this trend continues, the number of elementary teachers in 2015 would be 29(23) + 1452 or about 2,119,000.

Check your progress:

1. From 1980 through 2003, the female population F and the male population M of the United States (in thousands) are modeled by the following equations, where n is the number of years since 1980.

$$F = 1.379n + 115.513$$
 $M = 1.450n + 108.882$

a) Find an equation that models the total population T of the United States in thousands for this time period.

Total = Female + Male
$$T = (1379n + 115513) + (1450n + 108882)$$

 $T = 2829n + 224395$

b) If this trend continues, what will the population of the U.S. be in 2010?

$$2010 - 1980 = 30$$

 $T = 2829(30) + 224395 = 84870 + 24395 = 309265$ (in thousands)
The population is 2010 would have been 309,265,000 if the trend continued.

Practice

Find each sum or difference.

1)
$$(4p^2 + 5p) + (-2p^2 + p)$$

 $2p^2 + 6p$
2) $(5y^2 - 3y + 8) + (4y^2 - 9)$
 $9y^2 - 3y - 1$
3) $(8cd - 3d + 4c) + (-6 + 2cd)$
 $10cd - 3d + 4c - 6$
4) $(-8xy + 3x^2 - 5y) + (4x^2 - 2y + 6xy)$
 $-2xy + 7x^2 - 7y$
5) $(6a^2 + 7a - 9) - (-5a^2 + a - 10)$

 $6a^2 + 7a - 9 + 5a^2 - a + 10$

$$11a^{2} + 6a + 1$$
6) $(g^{3} - 2g^{2} + 5g + 6) - (g^{2} + 2g)$

$$g^{3} - 2g^{2} + 5g + 6 - g^{2} - 2g$$

$$g^{3} - 3g^{2} + 3g + 6$$
7) $(3ax^{2} - 5x - 3a) - (6a - 8a^{2}x + 4x)$

$$3ax^{2} - 5x - 3a - 6a + 8a^{2}x - 4x$$

$$3ax^{2} - 9x - 9a + 8a^{2}x$$
8) $(4rst - 8r^{2}s + s^{2}) - (6rs^{2} + 5rst - 2s^{2})$

 $4rst - 8r^2s + s^2 - 6rs^2 - 5rst + 2s^2$ $-rst - 8r^2s + 3s^2 - 6rs^2$