Definition of a Polynomial:
A polynomial is a monomial or a sum of monomials.
Special names of polynomials:

- A binomial is the sum of two monomials.
- A trinomial is the sum of three monomials.

Monomial	Binomial	Trinomial
7	$3+4 y$	$x+y+z$
$4 a b^{3} c^{2}$	$7 p q r+p q^{2}$	$3 v^{2}-2 w+a b^{3}$

Example: State whether each expression is a polynomial. If it is a polynomial, identify it as a monomial, binomial, or trinomial.

	Expression	Polynomial?	Monomial, Binomial, or Trinomial?
a.	$2 x-3 y z$	Yes, $2 x-3 y z=2 x+(-3 y z)$, the sum of two monomials.	binomial
b.	$8 n^{3}+5 n^{-2}$	No. $5 n^{-2}=\frac{5}{n^{2}}$, which is not a monomial.	none of these
c.	-8	Yes, -8 is a real number.	monomial
d.	$4 a^{2}+5 a+a+9$	Yes, the expression simplifies to $4 a^{2}+6 a+9$, so it is the sum of three monomials.	trinomial

Check your progress:

Expression	Polynomial?	Monomial, Binomial, or Trinomial?
\boldsymbol{x}	YES	Monomial
$\mathbf{- 3} \boldsymbol{y}^{\mathbf{2}} \mathbf{- \mathbf { 2 } \boldsymbol { y } + \mathbf { 4 } \boldsymbol { y } \mathbf { - 1 }}$	YES	Trinomial
$\mathbf{5 r} \boldsymbol{s}+\mathbf{7 t u \boldsymbol { v }}$	YES	Binomial
$\mathbf{1 0} \boldsymbol{x}^{\mathbf{- 4}} \mathbf{- 8} \boldsymbol{x}^{\mathbf{3}}$	NO	$10 x^{-4}$ is not a monomial, so none of these.

Example: Write a polynomial.
GEOMETRY Write a polynomial to represent the area of the shaded region.

The polynomial representing the area of the shaded region is $2 b r-\pi r^{2}$.
Check your progress:

1) Write a polynomial to represent the area of the shaded region.

$A=(2 x)(4 x)-(2 x)(x)=8 x^{2}-2 x^{2}=6 x^{2}$
Degree of a Monomial:
The degree of a monomial is the sum of the exponents of the variables.

Monomial	Degree
$8 y^{4}$	4
$3 a$	1
$-2 x y^{2} z^{3}$	$1+2+3$ or 6
7	0

Degree of a Polynomial:

The degree of a polynomial is the greatest degree of any term in the polynomial. To find the degree of a polynomial, you must find the degree of each term.

Example: Find the degree of each polynomial.
Find the degree of each polynomial.

Polynomial	Terms	Degree of Each Term	Degree of Polynomial	
a.	$5 m n^{2}$	$5 m n^{2}$	3	3
b.	$-4 x^{2} y^{2}+3 x^{2}+5$	$-4 x^{2} y^{2}, 3 x^{2}, 5$	$4,2,0$	4
c.	$3 a+7 a b-2 a^{2} b+16$	$3 a, 7 a b,-2 a^{2} b, 16$	$1,2,3,0$	3

Check your progress:

1) $7 x y^{5} z$

There is only one term, it has degree $1+5+1=7$, so the polynomial has degree 7 .
2) $12 m^{3} n^{2}-8 m n^{2}+3$

The terms have degree 5,3 , and 0 , respectively. The polynomial has degree 5 .
3) $2 r s-3 r s^{2}-7 r^{2} x^{2}-13$

The terms have degree 2, 3, 4, and 0 , respectively. The polynomial has degree 4 .

Ascending means increasing order. Descending means decreasing order.

Example: Arrange the polynomials in ascending order.
Arrange the terms of each polynomial so that the powers of x are in ascending order.
a. $7 x^{2}+2 x^{4}-11$

$$
\begin{aligned}
7 x^{2}+2 x^{4}-11 & =7 x^{2}+2 x^{4}-11 x^{0} & & x^{0}=1 \\
& =-11+7 x^{2}+2 x^{4} & & \text { Compare powers of } x: 0<2<4 .
\end{aligned}
$$

b. $2 x y^{3}+y^{2}+5 x^{3}-3 x^{2} y$

$$
\begin{aligned}
& 2 x y^{3}+y^{2}+5 x^{3}-3 x^{2} y \\
& \quad=2 x^{1} y^{3}+y^{2}+5 x^{3}-3 x^{2} y^{1} \quad x=x^{1} \\
& =y^{2}+2 x y^{3}-3 x^{2} y+5 x^{3} \quad \text { Compare powers of } x: 0<1<2<3 .
\end{aligned}
$$

Check your progress:

1) $3 x^{2} y^{4}+2 x^{4} y^{2}-4 x^{3} y+x^{5}-y^{2}$
$-y^{2}+3 x^{2} y^{4}-4 x^{3} y+2 x^{4} y^{2}$
2) $7 x^{3}-4 x y^{4}+3 x^{2} y^{3}-11 x^{6} y$ $-4 x y^{4}+3 x^{2} y^{3}+7 x^{3}-11 x^{6} y$

Example: Arrange the polynomials is descending order
Arrange the terms of each polynomial so that the powers of x are in descending order.
a. $6 x^{2}+5-8 x-2 x^{3}$

$$
\begin{aligned}
6 x^{2}+5-8 x-2 x^{3} & =6 x^{2}+5 x^{0}-8 x^{1}-2 x^{3} \quad x^{0}=1 \text { and } x=x^{1} \\
& =-2 x^{3}+6 x^{2}-8 x+5 \quad 3>2>1>0
\end{aligned}
$$

b. $3 a^{3} x^{2}-a^{4}+4 a x^{5}+9 a^{2} x$

$$
\begin{array}{ll}
3 a^{3} x^{2}-a^{4}+4 a x^{5}+9 a^{2} x & \\
\quad=3 a^{3} x^{2}-a^{4} x^{0}+4 a^{1} x^{5}+9 a^{2} x^{1} & \\
\quad=4 a x^{1} a^{1}, x^{0}=1, \text { and } x=x^{3} x^{2}+9 a^{2} x-a^{4} & 5>2>1>0 .
\end{array}
$$

Check your progress:

1) $4 x^{2}+2 x^{3} y+5-x$
$2 x^{3} y+4 x^{2}-x+5$
2) $x+2 x^{7} y-5 x^{4} y^{8}-x^{2} y^{2}+3$
$2 x^{7} y-5 x^{4} y^{8}-x^{2} y^{2}+x+3$

Practice

State whether each expression is a polynomial. If the expression is a polynomial, identify it as a monomial, a binomial, or trinomial.

1) $5 x-3 x y+2 x$

Is a polynomial. Binomial.
2) $\frac{2 z}{5}$

Is a polynomial. Monomial.
3) $9 a^{2}+7 a-5$

Is a polynomial. Trinomial.
Write a polynomial to represent the area of the shaded region.
4)

$$
A=(c)(2 d)-\pi\left(d^{2}\right)=2 c d-\pi d^{2}
$$

Find the degree of each polynomial.
5) 1
Degree: 0
6) $3 x+2$
Degree: 1
7) $2 x^{2} y^{3}+6 x^{4}$
Degree: 5

Arrange the terms of the polynomial so that the powers of \boldsymbol{x} are in ascending order.
8) $6 x^{3}-12+5 x$
$-12+5 x+6 x^{3}$
9) $-7 a^{2} x^{3}+4 x^{2}-2 a x^{5}+2 a$
$2 a+4 x^{2}-7 a^{2} x^{3}-2 a x^{5}$
Arrange the terms of the polynomial so that the powers of \boldsymbol{x} are in descending order.

$$
\begin{aligned}
& \text { 10) } 2 c^{5}+9 c x^{2}+3 x \\
& \text { 9c } x^{2}+3 x+2 c^{5} \\
& \text { 11) } y^{3}+x^{3}+3 x^{2} y+3 x y^{2} \\
& x^{3}+3 x^{2} y+3 x y^{2}+y^{3}
\end{aligned}
$$

