PROPERTIES OF EXPONENTS:

Name	Words	Symbols	Example	Justification
Product of Powers	To multiply two powers that have the same base, add their exponents.	$\begin{aligned} & a^{m} \cdot a^{n} \\ & =a^{m+n} \end{aligned}$	$\begin{aligned} & a^{4} \cdot a^{12} \\ & =a^{4+12} \\ & =a^{16} \end{aligned}$	
Power of a Power	To find the power of a power, multiply the exponents.	$\begin{aligned} & \left(a^{m}\right)^{n} \\ & =a^{m \cdot n} \end{aligned}$	$\begin{aligned} & \left(k^{5}\right)^{9}=k^{5 \cdot 9} \\ & =k^{45} \end{aligned}$	$\begin{aligned} \left(4^{2}\right)^{5} & =\overbrace{\left(4^{2}\right)\left(4^{2}\right)\left(4^{2}\right)\left(4^{2}\right)\left(4^{2}\right)}^{5 \text { factors }} \\ & =4^{2+2+2+2+2} \longleftarrow \\ & =4^{10} \\ \left(z^{8}\right)^{3} & =\overbrace{\left(z^{8}\right)\left(z^{8}\right)\left(z^{8}\right)}^{3 \text { factors }} \\ \rightarrow & =z^{8+8+8} \\ & =z^{24} \end{aligned}$
Power of a Product	To find the power of a product, find the power of each factor and multiply.	$\begin{aligned} & (a b)^{m} \\ & =a^{m} b^{m} \end{aligned}$	$\begin{aligned} & (-2 x y)^{3} \\ & =(-2)^{3} x^{3} y^{3} \\ & =-8 x^{3} y^{3} \end{aligned}$	$\begin{aligned} (x y)^{4} & =(x y)(x y)(x y)(x y) \\ & =(x \cdot x \cdot x \cdot x)(y \cdot y \cdot y \cdot y) \\ & =x^{4} y^{4} \\ (6 a b)^{3} & =(6 a b)(6 a b)(6 a b) \\ & =(6 \cdot 6 \cdot 6)(a \cdot a \cdot a)(b \cdot b \cdot b) \\ & =6^{3} a^{3} b^{3} \text { or } 216 a^{3} b^{3} \end{aligned}$
Quotient of Powers	To divide two powers with the same base, subtract the exponents.	$\begin{aligned} & \frac{a^{m}}{b^{m}} \\ & =a^{m-n} \end{aligned}$	$\begin{aligned} & \frac{b^{15}}{b^{7}}=b^{15-7} \\ & =b^{8} \end{aligned}$	
Power of a Quotient	To find the power of a quotient, find the power of the numerator and the denominator.	$\begin{aligned} & \left(\frac{a}{b}\right)^{m} \\ & =\frac{a^{m}}{b^{m}} \end{aligned}$	$\begin{aligned} & \left(\frac{x}{3}\right)^{3}=\frac{x^{3}}{3^{3}} \\ & =\frac{x^{3}}{27} \end{aligned}$	$\left(\frac{2}{5}\right)^{3}=\underbrace{\left(\frac{2}{5}\right)\left(\frac{2}{5}\right)\left(\frac{2}{5}\right)}_{3 \text { factors }}=\underbrace{\frac{3 \text { factors }}{\frac{2 \cdot 2 \cdot 2}{5 \cdot 5 \cdot 5}}}_{3 \text { factors }} \text { or } \frac{2^{3}}{5^{3}}$

Zero Exponent	Any nonzero number raised to the zero power is 1.	$a^{0}=1$	$\begin{aligned} & (-0.25)^{0} \\ & =1 \end{aligned}$	Method 1 Since $\frac{2^{4}}{2^{4}}$ cannot have two different values, we can conclude that $2^{0}=1$.
Negative Exponent	For any nonzero number a and any integer n, a^{-n} is the reciprocal of a^{n}. In addition, the reciprocal of a^{-n} is a^{n}.	$\begin{aligned} & a^{-n} \\ & =\frac{1}{a^{n}} \\ & \frac{1}{a^{-n}} \\ & =a^{n} \end{aligned}$	$\begin{aligned} & 5^{-2}=\frac{1}{5^{2}} \\ & =\frac{1}{25} \\ & \frac{1}{6^{-3}}=6^{3} \\ & =216 \end{aligned}$	Method 1 $\begin{array}{rlr} \frac{8^{2}}{8^{5}} & =8^{2-5} & \text { Quotient of Powers } \\ & =8^{-3} \quad \text { Subtract. } \\ \text { Method 2 } \\ \begin{array}{rlr} \frac{8^{2}}{8^{5}} & = & \frac{1}{8 \cdot 8 \cdot 8} \\ & =\frac{1}{8 \cdot 8 \cdot 8 \cdot 8 \cdot 8} & \text { Definition of powers } \\ & & \\ 8^{3} & \text { Simplify. } \end{array} \end{array}$ Since $\frac{8^{2}}{8^{5}}$ cannot have two different values, we can conclude that $8^{-3}=\frac{1}{8^{3}}$.

Example: Quotient of Powers

Simplify $\frac{a^{5} b^{8}}{a b^{3}}$. Assume that no denominator is equal to zero.

$$
\begin{array}{rlrl}
\frac{a^{5} b^{8}}{a b^{3}} & =\left(\frac{a^{5}}{a}\right)\left(\frac{b^{8}}{b^{3}}\right) & & \text { Group powers that have the same base. } \\
& =\left(a^{5-1}\right),\left(b^{8-3}\right) \text { or } a^{4} b^{5} & \text { Quotient of Powers }
\end{array}
$$

Check your progress:

1) $\frac{x^{3} y^{4}}{x^{2} y}$

$$
\left(\frac{x^{3}}{x^{2}}\right)\left(\frac{y^{4}}{y}\right)=\left(x^{3-2}\right)\left(y^{4-1}\right)=x^{1} y^{3}=x y^{3}
$$

Example: Power of a Quotient

Simplify $\left(\frac{2 p^{2}}{3}\right)^{4}$.

$$
\begin{array}{rlr}
\left(\frac{2 p^{2}}{3}\right)^{4} & =\frac{\left(2 p^{2}\right)^{4}}{3^{4}} & \text { Power of a Quotient } \\
& =\frac{2^{4}\left(p^{2}\right)^{4}}{3^{4}} & \text { Power of a Product } \\
& =\frac{16 p^{8}}{81} & \text { Power of a Power }
\end{array}
$$

Check your progress:

1) $\left(\frac{3 x^{4}}{4}\right)^{3}$

$$
\frac{\left(3 x^{4}\right)^{3}}{(4)^{3}}=\frac{(3)^{3}\left(x^{4}\right)^{3}}{(4)^{3}}=\frac{27\left(x^{4 \cdot 3}\right)}{64}=\frac{27}{64} x^{12}
$$

2) $\left(\frac{5 x^{5} y}{6}\right)^{2}$

$$
\frac{\left(5 x^{5} y\right)^{2}}{(6)^{2}}=\frac{(5)^{2}\left(x^{5}\right)^{2}(y)^{2}}{(6)^{2}}=\frac{25\left(x^{5 \cdot 2}\right) y^{2}}{36}=\frac{25}{36} x^{10} y^{2}
$$

Example: Zero Exponent

Simplify each expression. Assume that no denominator is equal to zero.
a. $\left(-\frac{3 x^{5} y}{8 x y^{7}}\right)^{0}$
b. $\frac{t^{3} s^{0}}{t}$

$$
\left(-\frac{3 x^{5} y}{8 x y^{7}}\right)^{0}=1 \quad a^{0}=1
$$

$$
\begin{array}{rlrl}
\frac{t^{3} s^{0}}{t} & =\frac{t^{3}(1)}{t} & a^{0}=1 \\
& =\frac{t^{3}}{t} & & \text { Simplify. } \\
& =t^{2} & & \text { Quotient of Powers }
\end{array}
$$

Check your progress:

1) $\frac{x^{0} y^{4}}{y^{2}}$

$$
\left(\frac{x^{0}}{1}\right)\left(\frac{y^{4}}{y^{2}}\right)=\left(\frac{1}{1}\right)\left(y^{4-2}\right)=(1)\left(y^{2}\right)=y^{2}
$$

2) $\left(\frac{2 x^{3} y^{2} z^{5}}{10 x y^{3} z^{4}}\right)^{0}$

$$
\left(\frac{2 x^{3} y^{2} z^{5}}{10 x y^{3} z^{4}}\right)^{0}=1
$$

Example: Negative Exponent

Simplify each expression. Assume that no denominator is equal to zero.
a. $\frac{b^{-3} c^{2}}{d^{-5}}$

$$
\begin{aligned}
\frac{b^{-3} c^{c}}{d^{-5}} & =\left(\frac{b^{-3}}{1}\right)\left(\frac{c^{2}}{1}\right)\left(\frac{1}{d^{-5}}\right) & & \text { Write as a product of fractions. } \\
& =\left(\frac{1}{b^{3}}\right)\left(\frac{c^{2}}{1}\right)\left(\frac{d^{5}}{1}\right) & & a^{-n}=\frac{1}{a^{n}} \\
& =\frac{c^{2} d^{5}}{b^{3}} & & \text { Multiply fractions. }
\end{aligned}
$$

b. $\frac{-3 a^{-4} b^{7}}{21 a^{2} b^{7} c^{-5}}$

$$
\begin{array}{rlrl}
\frac{-3 a^{-4} b^{7}}{21 a^{2} b^{7} c^{-5}} & =\left(\frac{-3}{21}\right)\left(\frac{a^{-4}}{a^{2}}\right)\left(\frac{b^{7}}{b^{7}}\right)\left(\frac{1}{c^{-5}}\right) & & \text { Group powers with the same base. } \\
& =\frac{-1}{7}\left(a^{-4-2}\right)\left(b^{7-7}\right)\left(c^{5}\right) & & \text { Quotient of Powers and } \\
& =\frac{-1}{7} a^{-6} b^{0} c^{5} & & \text { Segative Exponent Properties } \\
& =\frac{-1}{7}\left(\frac{1}{a^{6}}\right)(1) c^{5} & & \text { Negative Exponent and } \\
& =-\frac{c^{5}}{7 a^{6}} & & \text { Zero Exponent Properties } \\
& & \text { Multiply fractions. }
\end{array}
$$

c. $\frac{-3 q^{-2} r s^{4}}{-12 q r^{-3} s^{-5}}$
$\frac{-3 q^{-2} r s^{4}}{-12 q r^{-3} s^{-5}}=\left(\frac{-3}{-12}\right)\left(\frac{q^{-2}}{q}\right)\left(\frac{r}{r^{-3}}\right)\left(\frac{s^{4}}{s^{-5}}\right) \quad$ Group powers with the same base.
$=\frac{1}{4} q^{-3} r^{4} s^{9} \quad$ Simplify.
$=\frac{r^{4} s^{9}}{4 q^{3}} \quad$ Negative Exponent Property

Check your progress:

1) $\frac{r^{-5} s^{4}}{t^{-3}}$

$$
\left(\frac{r^{-5}}{1}\right)\left(\frac{s^{4}}{1}\right)\left(\frac{1}{t^{-3}}\right)=\left(\frac{1}{r^{5}}\right)\left(\frac{s^{4}}{1}\right)\left(\frac{t^{3}}{1}\right)=\frac{s^{4} t^{3}}{r^{5}}
$$

2) $\frac{24^{-2} y^{4}}{-6 x^{-3} y^{-2} z^{-1}}$

$$
\left(\frac{24}{-6}\right)\left(\frac{x^{-2}}{x^{-3}}\right)\left(\frac{y^{4}}{y^{-2}}\right)\left(\frac{1}{z^{-1}}\right)=(-4)\left(x^{-2--3}\right)\left(y^{4--2}\right)\left(\frac{z^{1}}{1}\right)=(-4)\left(x^{1}\right)\left(y^{6}\right)\left(z^{1}\right)=-4 x y^{6} z
$$

Practice

Simplify. Assume that no denominator is equal to zero.

1) $\frac{7^{8}}{7^{2}}$

$$
\left(7^{8-2}\right)=7^{6}
$$

2) $\frac{x^{8} y^{12}}{x^{2} y^{7}}$

$$
\left(\frac{x^{8}}{x^{2}}\right)\left(\frac{y^{12}}{y^{7}}\right)=\left(x^{8-2}\right)\left(y^{12-7}\right)=x^{6} y^{5}
$$

3) $\frac{5 p q^{7}}{10 p^{6} q^{3}}$

$$
\begin{aligned}
&\left(\frac{5}{10}\right)\left(\frac{p}{p^{6}}\right)\left(\frac{q^{7}}{q^{3}}\right)=\left(\frac{1}{2}\right)\left(p^{1-6}\right)\left(q^{7-3}\right) \\
&=\left(\frac{1}{2}\right)\left(p^{-5}\right)\left(q^{4}\right) \\
&=\left(\frac{1}{2}\right)\left(\frac{p^{-5}}{1}\right)\left(\frac{q^{4}}{1}\right)=\left(\frac{1}{2}\right)\left(\frac{1}{p^{5}}\right)\left(\frac{q^{4}}{1}\right) \\
&=\frac{q^{4}}{2 p^{5}}
\end{aligned}
$$

4) $\left(\frac{2 c^{3} d}{7 z^{2}}\right)^{3}$

$$
\begin{gathered}
\frac{\left(2 c^{3} d\right)^{3}}{\left(7 z^{2}\right)^{3}}=\frac{(2)^{3}\left(c^{3}\right)^{3}(d)^{3}}{(7)^{3}\left(z^{2}\right)^{3}}=\frac{\left(2^{3}\right)\left(c^{3 \cdot 3}\right)\left(d^{3}\right)}{\left(7^{3}\right)\left(z^{2 \cdot 3}\right)} \\
=\frac{8 c^{9} d^{3}}{343 z^{6}}
\end{gathered}
$$

5) $\left(\frac{4 a^{2} b}{2 c^{3}}\right)^{2}$

$$
\begin{gathered}
\frac{\left(4 a^{2} b\right)^{2}}{\left(2 c^{3}\right)^{2}}=\frac{(4)^{2}\left(a^{2}\right)^{2}(b)^{2}}{(2)^{2}\left(c^{3}\right)^{2}}=\frac{\left(4^{2}\right)\left(a^{2 \cdot 2}\right)\left(b^{2}\right)}{2^{2}\left(c^{3 \cdot 2}\right)} \\
\quad=\frac{16 a^{4} b^{2}}{4 c^{6}}=\left(\frac{16}{4}\right)\left(\frac{a^{4} b^{2}}{c^{6}}\right)=\frac{4 a^{4} b^{2}}{c^{6}}
\end{gathered}
$$

$$
\text { 6) }\left(\frac{3 m n^{3}}{6 n^{2}}\right)^{2}
$$

$$
\frac{\left(3 m n^{3}\right)^{2}}{\left(6 n^{2}\right)^{2}}=\frac{(3)^{2}(m)^{2}\left(n^{3}\right)^{2}}{(6)^{2}\left(n^{2}\right)^{2}}=\frac{\left(3^{2}\right)\left(m^{2}\right)\left(n^{3 \cdot 2}\right)}{\left(6^{2}\right)\left(n^{2 \cdot 2}\right)}
$$

$$
\begin{gathered}
=\frac{9 m^{2} n^{6}}{36 n^{4}}=\left(\frac{9}{36}\right)\left(\frac{m^{2}}{1}\right)\left(\frac{n^{6}}{n^{4}}\right) \\
=\left(\frac{1}{4}\right)\left(\frac{m^{2}}{1}\right)\left(\frac{n^{6-4}}{1}\right) \\
=\left(\frac{1}{4}\right)\left(\frac{m^{2}}{1}\right)\left(\frac{n^{2}}{1}\right)=\frac{m^{2} n^{2}}{4}
\end{gathered}
$$

7) $y^{0}\left(y^{5}\right)\left(y^{-9}\right)$

$$
y^{0+5+-9}=y^{-4}=\frac{y^{-4}}{1}=\frac{1}{y^{4}}
$$

8) $\frac{\left(4 m^{-3} n^{5}\right)^{0}}{m n}$

$$
\frac{1}{m n}
$$

9) $\frac{\left(3 x^{2} y^{5}\right)^{0}}{\left(21{ }^{5} y^{2}\right)^{0}}$

1
10) 13^{-2}

$$
\frac{13^{-2}}{1}=\frac{1}{13^{2}}=\frac{1}{169}
$$

11) $\frac{c^{-5}}{d^{3} g^{-8}}$

$$
\begin{gathered}
\left(\frac{c^{-5}}{1}\right)\left(\frac{1}{d^{3}}\right)\left(\frac{1}{g^{-8}}\right)=\left(\frac{1}{c^{5}}\right)\left(\frac{1}{d^{3}}\right)\left(\frac{g^{8}}{1}\right) \\
=\frac{g^{8}}{c^{5} d^{3}}
\end{gathered}
$$

12) $\frac{\left(c d^{-2}\right)^{3}}{\left(c^{4} d^{9}\right)^{-2}}$

$$
\begin{aligned}
& \frac{(c)^{3}\left(d^{-2}\right)^{3}}{\left(c^{4}\right)^{-2}\left(d^{9}\right)^{-2}}=\frac{\left(c^{3}\right)\left(d^{-2 \cdot 3}\right)}{\left(c^{4 \cdot-2}\right)\left(d^{9 \cdot-2}\right)} \\
& =\frac{c^{3} d^{-6}}{c^{-8} d^{-18}}=\left(\frac{c^{3}}{c^{-8}}\right)\left(\frac{d^{-6}}{d^{-18}}\right) \\
& =\left(c^{3--8}\right)\left(d^{-6--18}\right)=c^{11} d^{12}
\end{aligned}
$$

