Definition of a Monomial: A monomial is a number, a variable, or a product of a number and one or more variables
**Monomials that are real numbers are called constants.

Expression	Monomial?	Reason
-5	yes	-5 is a real number and an example of a constant.
$p+q$	no	The expression involves the addition, not the product, of two variables.
x	yes	Single variables are monomials.

Check your progress:
$\left.\begin{array}{|c|l|l|}\hline \text { Expression } & \text { Monomial? } & \begin{array}{l}\text { The expression involves the addition, no the product, of two } \\ \hline \mathbf{- x}+\mathbf{5}\end{array} \\ \text { NO } \\ \text { variables. }\end{array} . \begin{array}{l}\text { The expression involves the product of a number and multiple } \\ \text { variables. }\end{array}\right]$

Exponent and Base:

$$
\text { base } \overbrace{\wedge}^{2^{5}}=\overbrace{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2} \text { exponent } \text { or } 32
$$

PROPERTIES OF EXPONENTS:

Name	Words	Symbols	Example	Justification
Product of Powers	To multiply two powers that have the same base, add their exponents.	$\begin{aligned} & a^{m} \cdot a^{n} \\ & =a^{m+n} \end{aligned}$	$\begin{aligned} & a^{4} \cdot a^{12} \\ & =a^{4+12} \\ & =a^{16} \end{aligned}$	$\begin{aligned} & 2^{3} \cdot 2^{5}=\underbrace{2 \text { factors } \overbrace{4 \text { factors }}^{2 \text { actur }} \text { or } 3^{6}}_{\underbrace{3 \text { factors }}_{3+5 \text { or } 8 \text { factors }} \frac{5 \text { factors }}{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2} \text { or } 2^{8}} \\ & 3^{2} \cdot 3^{4}=\underbrace{3 \cdot 3}_{2 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \text { or factors }} \end{aligned}$
Power of a Power	To find the power of a power, multiply the exponents.	$\begin{aligned} & \left(a^{m}\right)^{n} \\ & =a^{m \cdot n} \end{aligned}$	$\begin{aligned} & \left(k^{5}\right)^{9}=k^{5 \cdot 9} \\ & =k^{45} \end{aligned}$	$\begin{aligned} \left(4^{2}\right)^{5} & =\overbrace{\left(4^{2}\right)\left(4^{2}\right)\left(4^{2}\right)\left(4^{2}\right)\left(4^{2}\right)}^{5 \text { factors }} \\ & =4^{2+2+2+2+2 \longleftarrow} \\ & =4^{10} \end{aligned}$

				$\begin{aligned} \left(z^{8}\right)^{3} & =\overbrace{\left(z^{8}\right)\left(z^{8}\right)\left(z^{8}\right)}^{3 \text { factors }} \\ \longrightarrow & =z^{8+8+8} \\ & =z^{24} \end{aligned}$
Power of a Product	To find the power of a product, find the power of each factor and multiply.	$\begin{aligned} & (a b)^{m} \\ & =a^{m} b^{m} \end{aligned}$	$\begin{aligned} & (-2 x y)^{3} \\ & =(-2)^{3} x^{3} y^{3} \\ & =-8 x^{3} y^{3} \end{aligned}$	$\begin{aligned} (x y)^{4} & =(x y)(x y)(x y)(x y) \\ & =(x \cdot x \cdot x \cdot x)(y \cdot y \cdot y \cdot y) \\ & =x^{4} y^{4} \\ (6 a b)^{3} & =(6 a b)(6 a b)(6 a b) \\ & =(6 \cdot 6 \cdot 6)(a \cdot a \cdot a)(b \cdot b \cdot b) \\ & =6^{3} a^{3} b^{3} \text { or } 216 a^{3} b^{3} \end{aligned}$

Example: Product of Powers

Simplify each expression.

a. $\left(5 x^{7}\right)\left(x^{6}\right)$

$$
\begin{aligned}
\left(5 x^{7}\right)\left(x^{6}\right) & =(5)(1)\left(x^{7}\right)\left(x^{6}\right) & & \text { Group the coefficients and the variables. } \\
& =(5 \cdot 1)\left(x^{7+6}\right) & & \text { Product of Powers } \\
& =5 x^{13} & & \text { Simplify. }
\end{aligned}
$$

b. $\left(4 a b^{6}\right)\left(-7 a^{2} b^{3}\right)$

$$
\begin{aligned}
\left(4 a b^{6}\right)\left(-7 a^{2} b^{3}\right) & =(4)(-7)\left(a \cdot a^{2}\right)\left(b^{6} \cdot b^{3}\right) & & \text { Group the coefficients and the variables. } \\
& =-28\left(a^{1+2}\right)\left(b^{6+3}\right) & & \text { Product of Powers } \\
& =-28 a^{3} b^{9} & & \text { Simplify. }
\end{aligned}
$$

Check your progress:

1) $\left(3 y^{4}\right)\left(7 y^{5}\right)$

$$
(3 \cdot 7)\left(y^{4} \cdot y^{5}\right)=(21)\left(y^{4+5}\right)=21 y^{9}
$$

2) $\left(-4 r s^{2} t^{3}\right)\left(-6 r^{5} s^{2} t^{3}\right)$

$$
(-4 \cdot-6)\left(r \cdot r^{5}\right)\left(s^{2} \cdot s^{2}\right)\left(t^{3} \cdot t^{3}\right)=(24)\left(r^{1+5}\right)\left(s^{2+2}\right)\left(t^{3+3}\right)=24 r^{6} s^{4} t^{6}
$$

Example: Power of a Power

Simplify $\left[\left(3^{2}\right)^{3}\right]^{2}$.

$$
\begin{aligned}
{\left[\left(3^{2}\right)^{3}\right]^{2} } & =\left(3^{2 \cdot 3}\right)^{2} & & \text { Power of a Power } \\
& =\left(3^{6}\right)^{2} & & \text { Simplify. } \\
& =3^{6 \cdot 2} & & \text { Power of a Power } \\
& =3^{12} \text { or 531,441 } & & \text { Simplify. }
\end{aligned}
$$

Check your progress:

1) $\left[\left(2^{2}\right)^{2}\right]^{4}$

$$
\left[2^{2 \cdot 2}\right]^{4}=\left[2^{4}\right]^{4}=2^{4 \cdot 4}=2^{16}
$$

Example: Power of a Product

GEOMETRY Express the area of the square as a monomial.
Area $=s^{2} \quad$ Formula for the area of a square
$=(4 a b)^{2} \quad$ Replace s with $4 a b$.
$=4^{2} a^{2} b^{2} \quad$ Power of a Product
$=16 a^{2} b^{2}$ Simplify.

The area of the square is $16 a^{2} b^{2}$ square units.

Check your progress:

1) Express the area of a square with sides of length $2 x y^{2}$ as a monomial.

$$
\begin{aligned}
& A=s^{2} \\
& A=\left(2 x y^{2}\right)^{2} \\
& A=2^{2} x^{2}\left(y^{2}\right)^{2}=4 x^{2} y^{2 \cdot 2}=4 x^{2} y^{4}
\end{aligned}
$$

To simplify an expression involving monomials, write an equivalent expression in which:

- each base appears exactly once,
- there are no powers of powers, and
- all fractions are in simplest form.

Example: Simplifying Expressions

Simplify $\left(3 x y^{4}\right)^{2}\left[(-2 y)^{2}\right]^{3}$.

$$
\begin{aligned}
\left(3 x y^{4}\right)^{2}\left[(-2 y)^{2}\right]^{3} & =\left(3 x y^{4}\right)^{2}(-2 y)^{6} & & \text { Power of a Power } \\
& =(3)^{2} x^{2}\left(y^{4}\right)^{2}(-2)^{6} y^{6} & & \text { Power of a Product } \\
& =9 x^{2} y^{8}(64) y^{6} & & \text { Power of a Power } \\
& =9(64) x^{2} \cdot y^{8} \cdot y^{6} & & \text { Commutative Property } \\
& =576 x^{2} y^{14} & & \text { Product of Powers }
\end{aligned}
$$

Check your progress:

1) $\left(\frac{1}{2} a^{2} b^{2}\right)^{3}\left[(-4 b)^{2}\right]^{2}$

$$
\begin{aligned}
& \left(\frac{1}{2}\right)^{3}\left(a^{2}\right)^{3}\left(b^{2}\right)^{3}(-4 b)^{2 \cdot 2} \\
& =\left(\frac{1}{8}\right)\left(a^{2 \cdot 3}\right)\left(b^{2 \cdot 3}\right)(-4 b)^{4} \\
& =\left(\frac{1}{8}\right)\left(a^{6}\right)\left(b^{6}\right)(-4)^{4}\left(b^{4}\right)=\left(\frac{1}{8}\right)\left(a^{6}\right)\left(b^{6}\right)(256)\left(b^{4}\right) \\
& =\left(\frac{1}{8} \cdot 256\right)\left(a^{6}\right)\left(b^{6} \cdot b^{4}\right)=32 a^{6} b^{6+4}=32 a^{6} b^{10}
\end{aligned}
$$

Practice

Determine whether the expression is a monomial. Write yes or no. Explain.

1) $5-7 d \quad$ No. The expression involves the difference, not the product.
2) $\frac{4 a}{3 b}$

No. The expression involves a quotient of variables.
3) n

Yes. A single variable is a monomial.

Simplify.

4) $x\left(x^{4}\right)\left(x^{6}\right)$

$$
x^{1+4+6}=x^{11}
$$

5) $\left(4 a^{4} b\right)\left(9 a^{2} b^{3}\right)$

$$
\begin{gathered}
(4 \cdot 9)\left(a^{4} \cdot a^{2}\right)\left(b \cdot b^{3}\right)=36\left(a^{4+2}\right)\left(b^{1+3}\right) \\
=36 a^{6} b^{4}
\end{gathered}
$$

6) $\left[\left(2^{3}\right)^{2}\right]^{3}$

$$
\begin{aligned}
{\left[2^{3 \cdot 2}\right]^{3} } & =\left[2^{6}\right]^{3}=2^{6 \cdot 3} \\
& =2^{18}
\end{aligned}
$$

7) $\left[\left(3^{2}\right)^{2}\right]^{2}$

$$
\begin{gathered}
{\left[3^{2 \cdot 2}\right]^{2}=\left[3^{4}\right]^{2}=3^{4 \cdot 2}} \\
=3^{8}
\end{gathered}
$$

8) $\left(3 y^{5} z\right)^{2}$

$$
\left(3^{2}\right)\left(y^{5 \cdot 2}\right)\left(z^{2}\right)=9 y^{10} z^{2}
$$

9) $\left(-2 f^{2} g\right)^{3}$

$$
(-2)^{3}\left(f^{2 \cdot 3}\right)\left(g^{3}\right)=-8 f^{6} g^{3}
$$

Express the area of the triangle as a monomial. Reminder: area of a triangle is $A=\frac{1}{2} \boldsymbol{b h}$.
10)

11)

$$
\begin{aligned}
& 4 a b^{5} \\
& \begin{array}{l}
3 a^{4} b \\
A=\frac{1}{2}\left(3 a^{4} b\right)\left(4 a b^{5}\right) \\
= \\
=\frac{1}{2}(12)\left(a^{4+1}\right)\left(b^{1+5}\right) \\
=6 a^{5} b^{6}
\end{array}
\end{aligned}
$$

Simplify.

$$
\text { 12) } \begin{gathered}
\left(-2 v^{3} w^{4}\right)^{3}\left(-3 v w^{3}\right)^{2} \\
\begin{array}{c}
(-2)^{3}\left(v^{3}\right)^{3}\left(w^{4}\right)^{3}(-3)^{2}(v)^{2}\left(w^{3}\right)^{2} \\
=-8\left(v^{3 \cdot 3}\right)\left(w^{4 \cdot 3}\right)(9)\left(v^{2}\right)\left(w^{3 \cdot 2}\right) \\
=(-8)\left(v^{9}\right)\left(w^{12}\right)(9)\left(v^{2}\right)\left(w^{6}\right) \\
=(-8 \cdot 9)\left(v^{9} \cdot v^{2}\right)\left(w^{12} \cdot w^{6}\right) \\
=(-72)\left(v^{9+2}\right)\left(w^{12+6}\right) \\
=-72 v^{11} w^{18}
\end{array}
\end{gathered}
$$

