Module 4 Lesson 4 Notes

Remember that: < or > means you will use a dashed line.

$$
\leq \text { or } \geq \text { means you will use a solid line. }
$$

The solutions to a system of inequalities occurs anywhere that the shading for the two lines overlaps.

Write and Solve a System of Inequalities

To ensure a growing season of sufficient length, Mr. Hobson has at most 16 days left to plant his corn and soybean crops. He can plant corn at a rate of 250 acres per day and soybeans at a rate of 200 acres per day. If he has at most 3500 acres available, how many acres of each type of crop can he plant?

Let C represent the days of planting corn, and let S represent the days of planting soybeans. We also need to decide which variable we will represent on the y -axis. I will choose C (days of planting corn). So, I will need to solve all equations for C .

$$
\begin{aligned}
& 250 C+200 S \leq 3500 \\
&-200 S-200 S \\
& 250 C \leq-200 S+3500 \\
& \frac{250 C}{250} \leq \frac{-200 S}{250}+\frac{3500}{250} \\
& C \leq-\frac{4}{5} S+14 \\
& C+S \leq 16 \\
&-S-S \\
& C \leq-S+16 \\
& C \leq-\frac{1}{1} S+16
\end{aligned}
$$

Any set of values within the purple shaded region would be a possible solution. The optimal solution would be at the intersection of the two lines.

Module 4 Lesson 4 Notes
GRAPHING SYSTEMS OF INEQUALITIES The most Jack can spend on bagels and muffins for the cross country team is $\$ 28$. A package of 6 bagels costs $\$ 2.50$. A package of muffins costs $\$ 3.50$ and contains 8 muffins. He needs to buy at least 12 bagels and 24 muffins.
a) Graph the region that shows how many packages of each item he can purchase.

Let b represent the number of packages of bagels purchased, and let m represent the number of packages of muffins purchased. We also need to decide which variable we will represent on the y-axis. I will choose m (packages of muffins). So, I will need to solve all equations for m .
$2.50 b+3.50 m \leq 28$
$-2.50 b-2.50 b$
$3.50 m \leq-2.50 b+28$
$\frac{3.50 m}{3.50} \leq \frac{-2.50 b}{3.50}+\frac{28}{3.50}$
$m \leq-\frac{5}{7} b+8$
12
$\frac{12}{6}=2$
$b \geq 2$
24
$\frac{24}{8}=3$
$m \geq 3$

b) Give an example of three different purchaseatheanemolechagels

Jack could purchase any amount of packages from within the shaded red triangle. I will choose 3 .
He could purchase 3 packages of bagels and 4 packages of muffins.
He could purchase 5 packages of bagels and 4 packages of muffins.
He could purchase 3 packages of bagels and 5 packages of muffins.

Solve each system of inequalities by graphing.

1) $\begin{aligned} & x \leq 4 \\ & y>2\end{aligned}$

The area shaded purple is the solution to the system of inequalities.

2) $y \leq-4 x-3$
$y>4 x+1$
$y \leq-\frac{4}{1} x-3$
$y>\frac{4}{1} x+1$
The area shaded purple is the solution to the system of inequalities.

3) $y>3$ $y>-x+4$

$y>3$
$y \leq-\frac{1}{1} x+4$
The area shaded purple is the solution to the system of inequalities.

4) $\begin{gathered}2 x+y \geq 4 \\ y \leq-2 x-1\end{gathered}$
$2 x+y \geq 4$
$-2 x-2 x$
$y \geq-2 x+4$
$y \geq \frac{-2}{1} x+4$
$y \leq-\frac{2}{1} x-1$
Since the shading never overlaps, there is NO SOLUTION to the system of inequalities

