Lesson 1.8 Notes

Write a recursive and explicit equation to represent each situation.

1) Steven invested $\$ 3,000$ in an account that earns 1.2% interest per month.

An increase of 1.2% per month means we want 101.2% of the amount of money in the account each month. So, our growth factor is 1.012.
$f(x)=1.012^{x} \cdot 3000$ where x is the number of months since the account was opened.
2) Sherri invests $\$ 2,000$ into an account that earns 6.5% interest per year.

An increase of 6.5\% per year means we want 106.5% of the amount of money in the account each year. So, our growth factor is 1.065 .
$g(x)=1.065^{x} \cdot 2000$ where x is the number of years since the account was opened.
3) Will Sherri or Steven have more money after 2 years?

We will need to find $f(24)$, since Steven has invested for 24 months after two years, and $g(2)$, since Sherri has invested for two years.
$f(24)=1.012^{24} \cdot 3000$
$f(24)=3994.42$
$g(2)=1.065^{2} \cdot 2000$
$g(2)=2268.45$
Steven will have more money after two years and will continue to out earn Sherri.
4) A pool is filled with algae (about 2,500 square feet worth of algae). Gerry adds an algicide that reduces the amount of algae by 50% per hour.

Decreasing the amount of algae by 50% per hour also means that 50% of the algae will remain (100$50=50$). So, our decay factor will be . 5.
$f(x)=.5^{x} \cdot 2500$
5) Ashley's company doesn't like using as much chemical as Gerry's company. She also has a job that requires her to get rid of some nasty pool water. Ashley decides to drain the 2,500 gallon pool. The amount of water in the pool decreases by 75% per hour.

Decreasing the amount of water by 75% per hour means that 25% of the water will remain ($100-75=25$). So, our decay factor will be .25 .
$g(x)=.25^{x} \cdot 2500$
6) Ashley needs to refill her pool. The water in the pool increases by 3 gallons per minute.

The pool refilling at a rate of 3 gallons per minute is arithmetic. We know that the pool is empty once it starts refilling. So, the initial value is zero.
$h(x)=3 x$

Write an explicit equation for each recursive function.

1) $f(x)=f(x-1)+6, f(1)=7$
2) $f(x)=f(x-1)-6, f(1)=7$

$$
\begin{aligned}
& f(0)=7-6=1 \\
& f(x)=6 x+1
\end{aligned}
$$

$$
\begin{aligned}
& f(0)=7+6=13 \\
& f(x)=-6 x+13
\end{aligned}
$$

2) $f(x)=f(x-1) \cdot 6, f(1)=7$
3) $f(x)=f(x-1) \cdot \frac{1}{6}, f(1)=7$

$$
\begin{aligned}
& f(0)=7 \div 6=\frac{7}{6} \\
& f(x)=6^{x} \cdot \frac{7}{6}
\end{aligned}
$$

$$
\begin{aligned}
& f(0)=7 \div \frac{1}{6}=42 \\
& f(x)=\left(\frac{1}{6}\right)^{x} \cdot 42
\end{aligned}
$$

Write a recursive function for each explicit function.

1) $f(x)=9 x-12$

$$
\begin{aligned}
& f(x)=f(x-1)+9 \\
& f(0)=-12
\end{aligned}
$$

2) $f(x)=-9 x+12$

$$
\begin{aligned}
& f(x)=f(x-1)-9 \\
& f(0)=12
\end{aligned}
$$

3) $f(x)=9^{x} \cdot \frac{1}{12}$

$$
\begin{aligned}
& f(x)=f(x-1) \cdot 9 \\
& f(0)=\frac{1}{12}
\end{aligned}
$$

4) $f(x)=\left(\frac{1}{9}\right)^{x} \cdot-12$

$$
\begin{aligned}
& f(x)=f(x-1) \cdot \frac{1}{9} \\
& f(0)=-12
\end{aligned}
$$

Other important notes from today:

Fill in the blanks for each table, then write the recursive and explicit equation for each sequence.
1)

x	y
1	4
2	16
3	64
4	256
5	1,024

Recursive:

$$
\begin{aligned}
& f(0)=1 \\
& f(x)=f(x-1) \cdot 4
\end{aligned}
$$

Explicit:

$$
f(x)=4^{x}
$$

2)

x	y
1	3
2	5
3	7
4	9

Recursive:
$f(0)=1$
$f(x)=f(x-1)+2$
Explicit:
$f(x)=2 x+1$

5	11

3)

x	y
1	-64
2	-16
3	-4
4	-1
5	$-\frac{1}{4}$

Recursive:
$f(0)=-256$
$f(x)=f(x-1) \cdot \frac{1}{4}$
Explicit:

$$
f(x)=\left(\frac{1}{4}\right)^{x} \cdot(-256)
$$

Write each equation of the line in $y=m x+b$ form.
1)

Equation: $y=\frac{3}{4} x+2$

$b=5$
Equation: $y=-4 x+5$

