Lesson 1.8 Notes

x	y	Describe the pattern.	Recursive rule:	Explicit rule:	Arithmetic, Geometric, or Neither?
1	5			6() 2ř 2 F	
2	10	Each term is twice as	f(0) = 2.5	$f(x) = 2^{x} \cdot 2.5$	Geometric
3	20	much as the term	$f(x) = f(x-1) \cdot 2$		
4	40	before it. So, we are			
5	?	munipiying by two.			
n	?				

x	y
1	-8
2	-17
3	-26
4	-35
5	-44
6	-53
п	?

Describe the pattern.	Recursive rule:	Explicit rule:	Arithmetic, Geometric, or Neither?
Each term is 9 less than the previous term. So, we are subtracting 9.	f(0) = 1 f(x) = f(x - 1) - 9	f(x) = -9x + 1	Arithmetic

x	y
1	2
2	6
3	18
4	54
5	162
6	486
n	?

Describe the pattern.	Recursive rule:	Explicit rule:	Arithmetic,
			Geometric, or Neither?
Each term is three times as much as the term before it. So, we are multiplying by three.	$f(0) = \frac{2}{3}$ $f(x) = f(x-1) \cdot 3$	$f(x) = 3^x \cdot \frac{2}{3}$	Geometric

x	y
1	3
2	15
3	27
4	39
5	51
6	?
n	?

Describe the pattern.	Recursive rule:	Explicit rule:	Arithmetic,
			Geometric, or Neither?
Each term is 12 more	f(0) = -9	f(x) = 12x - 9	Arithmetic
than the previous term.	f(x) = f(x-1) + 12		
So, we are adding 12.			

x	y
0	1
1	$1\frac{3}{5}$
2	$2\frac{1}{5}$
3	$2\frac{4}{5}$
4	$3\frac{2}{5}$
5	4
n	?

Describe the pattern.	Recursive rule:	Explicit rule:	Arithmetic,
			Geometric, or Neither?
Each term is $\frac{3}{5}$ more than the previous term.** So, we are adding $\frac{3}{5}$.	f(0) = 1 $f(x) = f(x - 1) + \frac{3}{5}$	$f(x) = \frac{3}{5}x + 1$	Arithmetic
5			

**If you change all of the y-values to improper fractions with denominators of 5 it becomes more clear: $\frac{5}{5}, \frac{8}{5}, \frac{11}{5}, \frac{14}{5}, \frac{17}{5}, \frac{20}{5}, \dots$

x	y
1	10
2	2
3	2
	5
4	2
	25
5	2
	125
6	2
	625
n	?

~	Geometric. or Neither?
26	••••••••••••••••••••••••••••••••••••••
$f(x) = \left(\frac{1}{5}\right)^x \cdot 50$	Geometric
	$f(x) = \left(\frac{1}{5}\right) \cdot 50$

x	у	Describe the pattern.	Recursive rule:	Explicit rule:	Arithmetic,
1	-1	_			Geometric, or Neither?
2	0.2	Each term is being	f(0) = 5	$f(x) = (-0.2)^x \cdot 5$	Geometric
3	-0.04	multiplied by 0.2.*	f(x)		
4	0.008	Since the sign is	$= f(x-1) \cdot (-0.2)$		
5	-0.0016	alternating from			
6	0.00032	positive to negative we			
		are multiplying by			
n	?	-0.2.			

*Since the decimals are adding one zero in front of the number, I know it is multiplying by 0.2, not 2.

x	y				
0	3	Describe the pattern.	Recursive rule:	Explicit rule:	Arithmetic,
1	4				Geometric, or Neither?
2	7	Each term adds an	f(0) = 3	$f(x) = x^2 + 3$	Neither
3	12	increasing odd	f(x) = f(x-1) + 2x		
4	19	number.	- 1		
5	?				
n	?				

***I do not expect you to be able to write the recursive and explicit rule for a function that is "neither".

Other important notes from today:

Find the constant ratio for each geometric sequence.

1) 16, 24, 36, ... $\frac{36}{24} = 1.5$, $\frac{24}{16} = 1.5$ The constant ratio is 1.5. 2) $\frac{5}{2}, \frac{5}{3}, \frac{10}{9}$, ... $\frac{10}{9} \div \frac{5}{3} = 1.5$, $\frac{5}{3} \div \frac{5}{2} = 1.5$ The constant ratio is 1.5. 3) 81, 108, 144, ... $\frac{144}{108} = \frac{4}{3}$, $\frac{108}{81} = \frac{4}{3}$ The constant ratio is $\frac{4}{3}$.

Fill in the blanks for each table, then write the recursive and explicit equation for each sequence.

Write each equation of the line in y = mx + b form.

