\qquad

In Exercises 1-10, find each missing length. All measurements are in centimeters. Use the symbol \approx for approximate answers and round to the nearest tenth of a centimeter.
1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12) What is the length of the diagonal of a square whose area is $64 \mathrm{~cm}^{2}$?
\qquad
13) A baseball infield is a square, each side measuring 90 feet. To the nearest foot, what is the distance from home plate to second base?

14) A rectangular garden 6 meters wide has a diagonal measuring 10 meters. Find the perimeter of the garden.

In Exercises 15-20, use the Converse of the Pythagorean Theorem to determine whether each triangle is a right triangle.
15)

16)

17)

18)

19)

20)

21) Is a triangle with sides measuring 9 feet, 12 feet, and 18 feet a right triangle?
22) A window frame that seems rectangular has height 408 cm , length 306 cm , and one diagonal with length 525 cm . Is the window frame really rectangular? Explain.

\qquad
23) Both quadrilaterals are squares.
$y=$ \qquad

24) $y=$ \qquad

25) $y=$ \qquad

26) Find the area of a right triangle with hypotenuse length 17 cm and one leg length 15 cm .
27) How high on a building will a $15-$ foot ladder touch if the foot of the ladder is 5 feet from the building?
28) The congruent sides of an isosceles triangle measure 6 cm , and the base measures 8 cm . Find the area.
29) Calculate each lettered angle, measure, or arc. $\overline{E F}$ is a diameter; ℓ_{1} and ℓ_{2} are tangents.
$a=$ \qquad
$b=$ \qquad
$c=$ \qquad
$d=$ \qquad
$e=$ \qquad
$f=$ \qquad
$g=$ \qquad
$h=$ \qquad
$n=$ \qquad
\qquad
$s=$ \qquad
$t=$ \qquad
$u=$ \qquad
$v=$ \qquad

