Lessons 4.1 & 4.2 – Triangle Sum Conjecture and Properties of Isosceles Triangles

Isosceles Triangle Review:

Example 1: Determine the angle measures.

Let's label the unlabeled angle to make references easier.

The sum of the measures of the angles in every triangle is 180° , so $31^\circ + 82^\circ + x = 180^\circ$. This means $x = 67^\circ$.

 $p = 67^{\circ}$ p is a vertical angle to x and must be congruent to x.

 $q = 15^{\circ}$ p, q, and the 98° angle form a triangle and must add to 180°.

So, $67^{\circ} + 98^{\circ} + q = 180^{\circ}$.

Example 2: Determine the angle measures.

Let's label the unlabeled angle to make references easier.

The sum of the measures of the angles in every triangle is 180° , so $28^\circ + 53^\circ + a = 180^\circ$. This means $a = 99^\circ$.

 $y = 81^{\circ}$ y is a linear pair with a and must add to 180° with a.

 $x = 82^{\circ}$ x, y, and the 17° angle form a triangle and must add to 180°.

So,
$$81^{\circ} + 17^{\circ} + x = 180^{\circ}$$

Example 3: Determine the angle measures.

Let's label an unlabeled angle to make references easier.

x and the 23° angle are alternate interior angles on parallel lines and must be congruent, so $x = 23^{\circ}$.

 $a = 78^{\circ}$ x, a, and the 79° angle form a triangle and must add to 180°.

So, $23^{\circ} + 79^{\circ} + a = 180^{\circ}$.

 $b = 29^{\circ}$ b, a, the 23° angle, and the 50° angle are supplementary angles and must add to 180°. So, 23° + 50° + 78° + $b = 180^{\circ}$.

Example 4: Determine the angle measures.

Let's label some angles to make references easier.

x is a vertical angle to the 100° angle, so $x = 100^{\circ}$.

The sum of the measures of the angles in every triangle is 180° , so $100^\circ + y + z = 180^\circ$. Since y and z are marked congruent, we can say $100^\circ + 2y = 180^\circ$. This means that $2y = 80^\circ$ and $y = 40^\circ$. Since y and z are marked congruent, $z = 40^\circ$.

- $t = 100^{\circ}$ t is an alternate interior angle on parallel lines to the 100° angle and must be congruent to 100°.
- $s = 40^{\circ}$ s is a corresponding angle on parallel lines (the ones marked with one arrow) to z and must be congruent to z.
- $r = 40^{\circ}$ r, s, and t form a triangle and must add to 180° . So, $100^{\circ} + 40^{\circ} + q = 180^{\circ}$.

Example 5: Determine the angle measures.

x = _____, *y* = _____

Let's label some angles to make references easier.

b is marked congruent to the 85° angle, so $b = 85^{\circ}$.

 $y = 64^{\circ}$ b, y, and the 31° angle form a triangle and must add to 180°. So, $31^{\circ} + 85^{\circ} + y = 180^{\circ}$.

a is marked congruent to *y*, so $a = 64^{\circ}$.

 $x = 31^{\circ}$ a, x, and the 85° angle form a triangle and must add to 180°. So, $64^{\circ} + 85^{\circ} + x = 180^{\circ}$. Example 6: Determine the angle measures.

We need to find the value of x before we can find the value of y.

The three angles of a triangle must add to 180° , so $(100 - x) + (30 + 4x) + (7x) = 180^\circ$.

100 - x + 30 + 4x + 7x = 180	Remove parentheses	
100 + 30 + 10x = 180	Combine terms with x	
130 + 10x = 180	Combine constant terms	
10x = 50	Subtract 130 from both sides	
x = 5	Divide by 10 on both sides	
$7x$ and y are a linear pair of angles and must add to 180° , so $7x + y = 180^\circ$.		

We know that x = 5, so we can substitute that in: $7(5) + y = 180^{\circ}$.

35 + y = 180	Multiply
<i>y</i> = 145	Subtract 35 from each side
$y = 145^{\circ}$	

Example 7: Determine the angle measures.

Let's label the unlabeled angle to make references easier.

x is marked congruent to the 76° angle, so $x = 76^{\circ}$.

 $s = 28^{\circ}$ s, x, and the 76° angle form a triangle and must add to 180°. So, 76° + 76° + $s = 180^{\circ}$.

Example 8: Determine the angle measures.

Let's label the unlabeled angle to make references easier.

m, *x*, and the 35° angle form a triangle and must add to 180°. So, $35^\circ + m + x = 180^\circ$. *x* is marked congruent to *m*, so $35^\circ + 2m = 180^\circ$.

$$2m = 145^{\circ}.$$
$$m = 72\frac{1}{2}^{\circ}$$

Example 9: Determine the angle measures.

Find the measure of $\angle QPT$.

In triangle *QPR*, $\angle PQR$, $\angle QRP$ and $\angle RPQ$ are marked congruent, so we can split 180° three ways to find the measure of each angle in that triangle. $m \angle PQR = m \angle QRP = m \angle RPQ = 60^\circ$.

In triangle *PRS*, $m \angle PRS = 90^\circ$, and $\angle RSP$ and $\angle SPR$ are marked congruent. Let's use x as the variable to find those two angles since they both have the same measure. So, $90^\circ + 2x = 180^\circ \Rightarrow 2x = 90^\circ \Rightarrow x = 45^\circ$. This means that $m \angle RSP = m \angle SPR = 45^\circ$.

In triangle *PST*, $m \angle PST = 90^\circ$. $\angle STP$ is marked congruent to $\angle PQR$, $\angle QRP$ and $\angle RPQ$ which means that $m \angle STP = 60^\circ$. To find $m \angle TPS$, we can subtract 60° and 90° from 180° . So, $m \angle TPS = 30^\circ$

 $m \angle QPT = 135^{\circ}$ $m \angle QPT = m \angle QPR + m \angle RPS + m \angle SPT.$ So, $m \angle QPT = 60^{\circ} + 45^{\circ} + 30^{\circ}.$

Example 10: Use the diagram to explain why $\angle A$ and $\angle B$ are complementary.

$m \angle A + m \angle B + m \angle C = 180^{\circ}$	Angles of a triangle add to 180°
$m \angle A + m \angle B + 90^\circ = 180^\circ$	Substitute the angle measure of $\angle C$
$m \angle A + m \angle B = 90^{\circ}$	Subtract 90° from both sides

The definition of complementary is that two angles add to 90°. So, we just showed that $m \angle A + m \angle B = 90^\circ$. Therefore $\angle A$ and $\angle B$ are complementary.

Example 11: Determine the angle measures.

Triangle *RTI* is isosceles with $\overline{RT} \cong \overline{TI}$. The angles opposite the congruent sides are the base angles and must be congruent. So, $\angle R$ and $\angle I$ are the base angles and $\angle R \cong \angle I$. This means that $m \angle R = m \angle I = 58^{\circ}$.

All angles of a triangle must add to 180°. So, $m \angle R + m \angle T + m \angle I = 180^\circ$.

$58^\circ + m \angle T + 58^\circ = 180^\circ$	Substitute known values
$116^{\circ} + m \angle T = 180^{\circ}$	Combine constant values
$m \angle T = 64^{\circ}$	Subtract 116 from both sides

Example 12: Determine the angle measures.

Triangle *ANG* is isosceles with $\overline{NA} \cong \overline{NG}$. The angles opposite the congruent sides are the base angles and must be congruent. So, $\angle A$ and $\angle G$ are the base angles and $\angle A \cong \angle G$.

All angles of a triangle must add to 180°. So, $m \angle A + m \angle N + m \angle G = 180^\circ$.

$m \angle A + 90^\circ + m \angle G = 180^\circ$	Substitute known values
$90^\circ + 2m \angle G = 180^\circ$	Since $\angle A \cong \angle G$, we can say that there are basically two of one or the other angle.

$2m \angle G = 90^{\circ}$	Subtract 90 from each side
$m \angle G = 45^{\circ}$	Divide by 2 on both sides

Example 13: Determine the angle measures.

Let's label some angles to make references easier.

a is a linear pair with the 110° angle, so $a + 110^\circ = 180^\circ$, and $a = 70^\circ$.

The triangle is isosceles with b and c as the base angles, so b = c.

$x = 125^{\circ}$	x is a linear pair with c, so $x + 55^\circ = 180^\circ$.
$c = 55^{\circ}$	divide by two on both sides
$2c = 110^{\circ}$	subtract 70 from both sides
$70^{\circ} + 2c = 180^{\circ}$	Since $b = c$, we can say that $b + c = c + c = 2c$
$70^{\circ} + b + c = 180^{\circ}$	substitute known values
$a + b + c = 180^{\circ}$	angles of a triangle

Example 14: Find the measures.

 $m \angle A =$ ____, perimeter of $\triangle ABC =$ _____ a + 7 cm 39° a

All angles of a triangle must add to 180° . So, $m \angle A + m \angle B + m \angle C = 180^{\circ}$. $m \angle A + 102^{\circ} + 39^{\circ} = 180^{\circ}$ Substitute known values $141^{\circ} + m \angle A = 180^{\circ}$ Combine constant values $m \angle A = 39^{\circ}$ Subtract 141 from both sides

Since, $m \angle A = m \angle C = 39^\circ$, $\angle A$ and $\angle C$ are the base angles of an isosceles triangle with $\overline{AB} \cong \overline{BC}$. This means that $\overline{mAB} = \overline{mBC} = 13$ cm. So, a = 13 cm.

To find $m\overline{AC}$, we can substitute 13 for *a*. $m\overline{AC} = a + 7 = 13 + 7 = 20$ cm.

Perimeter of \triangle ABC = 46 \text{ cm} $m\overline{AB} + m\overline{BC} + m\overline{AC} = 13 + 13 + 20$

Example 15: Find the measures.

LM = 163 m	Subtract 373 from both sides
LM + 373 = 536	Combine constant values
LM + 210 + 163 = 536	Substitute known values
LM + MO + LO = 536	The perimeter of ΔLMO is 536 m

Triangle *LMO* is isosceles with $\overline{LM} \cong \overline{LO}$. The angles opposite the congruent sides are the base angles and must be congruent. So, $\angle M$ and $\angle O$ are the base angles, $\angle M \cong \angle O$, and $m \angle M = m \angle O = x$.

All angles of a triangle must add to 180°. So, $m \angle L + m \angle M + m \angle 0 = 180^{\circ}$.

$m \angle M = 50^{\circ}$	$m \angle M = m \angle 0 = x$ and $x = 50^{\circ}$
$x = 50^{\circ}$	Divide by 3 on both sides
$3x = 150^{\circ}$	Subtract 30 from both sides
$3x + 30^{\circ} = 180^{\circ}$	Combine like terms
$(x + 30^{\circ}) + (x) + (x) = 180^{\circ}$	Substitute for angles

Example 16: Find the measures.

Triangle *QRS* is isosceles with $\overline{QR} \cong \overline{QS}$. The angles opposite the congruent sides are the base angles and must be congruent. So, $\angle R$ and $\angle S$ are the base angles, $\angle R \cong \angle S$, and $m \angle R = m \angle S = 68^{\circ}$.

All angles of a triangle must add to 180°. So, $m \angle Q + m \angle R + m \angle S = 180^\circ$.

$m \angle Q = 44^{\circ}$	Subtract 136 from both sides
$136^{\circ} + m \angle Q = 180^{\circ}$	Combine constant values
$m \angle Q + 68^{\circ} + 68^{\circ} = 180^{\circ}$	Substitute known values

<i>QR</i> = 125 cm	QR = y + 31 = 94 + 31 = 125
<i>y</i> = 94	Divide by 3 on both sides
3y = 282	Subtract 62 from both sides
3y + 62 = 344	Combine like terms
(y + 31) + (y) + (y + 31) = 344	Substitute for side values
QR + RS + QS = 344	The perimeter of $\triangle QRS$ is 344 cm
$\overline{QR} \cong \overline{QS}, QR = QS = y + 31 \text{ cm}$	