## Lessons 4.1 \& 4.2 - Triangle Sum Conjecture and Properties of Isosceles Triangles

Triangle Sum Conjecture - The sum of the measures of the angles in every triangle is $180^{\circ}$.


Isosceles Triangle Review:


Note: The converse of this conjecture is also true. If a triangle has two congruent angles, then it is an isosceles triangle.

Example 1: Determine the angle measures.

$$
p=
$$

$\qquad$ $q=$ $\qquad$


Let's label the unlabeled angle to make references easier.


The sum of the measures of the angles in every triangle is $180^{\circ}$, so $31^{\circ}+82^{\circ}+x=180^{\circ}$. This means $x=67^{\circ}$.
$\boldsymbol{p}=\mathbf{6 7}^{\circ} \quad p$ is a vertical angle to $x$ and must be congruent to $x$.
$\boldsymbol{q}=15^{\circ} \quad p, q$, and the $98^{\circ}$ angle form a triangle and must add to $180^{\circ}$.
So, $67^{\circ}+98^{\circ}+q=180^{\circ}$.

Example 2: Determine the angle measures.
$x=$ $\qquad$ , $y=$ $\qquad$


Let's label the unlabeled angle to make references easier.


The sum of the measures of the angles in every triangle is $180^{\circ}$, so $28^{\circ}+53^{\circ}+a=180^{\circ}$. This means $a=99^{\circ}$.
$\boldsymbol{y}=\mathbf{8 1}{ }^{\circ} \quad y$ is a linear pair with $a$ and must add to $180^{\circ}$ with $a$.
$\boldsymbol{x}=\mathbf{8 2}^{\circ} \quad x, y$, and the $17^{\circ}$ angle form a triangle and must add to $180^{\circ}$.
So, $81^{\circ}+17^{\circ}+x=180^{\circ}$

Example 3: Determine the angle measures.
$a=$ $\qquad$ , $b=$ $\qquad$


Let's label an unlabeled angle to make references easier.

$x$ and the $23^{\circ}$ angle are alternate interior angles on parallel lines and must be congruent, so $x=$ $23^{\circ}$.
$\boldsymbol{a}=78^{\circ} \quad x, a$, and the $79^{\circ}$ angle form a triangle and must add to $180^{\circ}$.
So, $23^{\circ}+79^{\circ}+a=180^{\circ}$.
$\boldsymbol{b}=29^{\circ} \quad b, a$, the $23^{\circ}$ angle, and the $50^{\circ}$ angle are supplementary angles and must add to $180^{\circ}$. So, $23^{\circ}+50^{\circ}+78^{\circ}+b=180^{\circ}$.

Example 4: Determine the angle measures.

$$
r=, \quad, s=
$$

$$
t=
$$

$\qquad$


Let's label some angles to make references easier.

$x$ is a vertical angle to the $100^{\circ}$ angle, so $x=100^{\circ}$.
The sum of the measures of the angles in every triangle is $180^{\circ}$, so $100^{\circ}+y+z=180^{\circ}$. Since $y$ and $z$ are marked congruent, we can say $100^{\circ}+2 y=180^{\circ}$. This means that $2 y=80^{\circ}$ and $y=40^{\circ}$. Since $y$ and $z$ are marked congruent, $z=40^{\circ}$.
$\boldsymbol{t}=\mathbf{1 0 0}^{\circ} \quad t$ is an alternate interior angle on parallel lines to the $100^{\circ}$ angle and must be congruent to $100^{\circ}$.
$\boldsymbol{s}=\mathbf{4 0}{ }^{\circ} \quad s$ is a corresponding angle on parallel lines (the ones marked with one arrow) to $Z$ and must be congruent to $z$.
$\boldsymbol{r}=4 \mathbf{0 0}^{\circ} \quad r, s$, and $t$ form a triangle and must add to $180^{\circ}$. So, $100^{\circ}+40^{\circ}+q=180^{\circ}$.

Example 5: Determine the angle measures.

$$
x=\ldots
$$



Let's label some angles to make references easier.

$b$ is marked congruent to the $85^{\circ}$ angle, so $b=85^{\circ}$.
$\boldsymbol{y}=64^{\circ} \quad b, y$, and the $31^{\circ}$ angle form a triangle and must add to $180^{\circ}$.
So, $31^{\circ}+85^{\circ}+y=180^{\circ}$.
$a$ is marked congruent to $y$, so $a=64^{\circ}$.
$\boldsymbol{x}=31^{\circ} \quad a, x$, and the $85^{\circ}$ angle form a triangle and must add to $180^{\circ}$.
So, $64^{\circ}+85^{\circ}+x=180^{\circ}$.

Example 6: Determine the angle measures.

$$
y=
$$



We need to find the value of $x$ before we can find the value of $y$.
The three angles of a triangle must add to $180^{\circ}$, so $(100-x)+(30+4 x)+(7 x)=180^{\circ}$.
$100-x+30+4 x+7 x=180 \quad$ Remove parentheses
$100+30+10 x=180 \quad$ Combine terms with $x$
$130+10 x=180$
Combine constant terms
$10 x=50 \quad$ Subtract 130 from both sides
$x=5$
Divide by 10 on both sides
$7 x$ and $y$ are a linear pair of angles and must add to $180^{\circ}$, so $7 x+y=180^{\circ}$.
We know that $x=5$, so we can substitute that in: $7(5)+y=180^{\circ}$.
$35+y=180$
Multiply
$y=145$
Subtract 35 from each side
$y=145^{\circ}$

Example 7: Determine the angle measures.
$s=$ $\qquad$


Let's label the unlabeled angle to make references easier.

$x$ is marked congruent to the $76^{\circ}$ angle, so $x=76^{\circ}$.
$\boldsymbol{s}=\mathbf{2 8}^{\circ} \quad s, x$, and the $76^{\circ}$ angle form a triangle and must add to $180^{\circ}$.
So, $76^{\circ}+76^{\circ}+s=180^{\circ}$.

Example 8: Determine the angle measures.

$$
m=
$$

$\qquad$


Let's label the unlabeled angle to make references easier.

$m, x$, and the $35^{\circ}$ angle form a triangle and must add to $180^{\circ}$. So, $35^{\circ}+m+x=180^{\circ}$. $x$ is marked congruent to $m$, so $35^{\circ}+2 m=180^{\circ}$.
$2 m=145^{\circ}$.
$m=72 \frac{1}{2}$ 。

## Example 9: Determine the angle measures.

Find the measure of $\angle Q P T$.


In triangle $Q P R, \angle P Q R, \angle Q R P$ and $\angle R P Q$ are marked congruent, so we can split $180^{\circ}$ three ways to find the measure of each angle in that triangle. $m \angle P Q R=m \angle Q R P=m \angle R P Q=60^{\circ}$. In triangle $P R S, m \angle P R S=90^{\circ}$, and $\angle R S P$ and $\angle S P R$ are marked congruent. Let's use $x$ as the variable to find those two angles since they both have the same measure. So, $90^{\circ}+2 x=$ $180^{\circ} \Rightarrow 2 x=90^{\circ} \Rightarrow x=45^{\circ}$. This means that $m \angle R S P=m \angle S P R=45^{\circ}$.

In triangle $P S T, m \angle P S T=90^{\circ} . \angle S T P$ is marked congruent to $\angle P Q R, \angle Q R P$ and $\angle R P Q$ which means that $m \angle S T P=60^{\circ}$. To find $m \angle T P S$, we can subtract $60^{\circ}$ and $90^{\circ}$ from $180^{\circ}$. So, $m \angle T P S=30^{\circ}$
$\boldsymbol{m} \angle \boldsymbol{Q P T}=\mathbf{1 3 5}^{\circ} \quad m \angle Q P T=m \angle Q P R+m \angle R P S+m \angle S P T$.
So, $m \angle Q P T=60^{\circ}+45^{\circ}+30^{\circ}$.

Example 10: Use the diagram to explain why $\angle A$ and $\angle B$ are complementary.

$m \angle A+m \angle B+m \angle C=180^{\circ}$
Angles of a triangle add to $180^{\circ}$
$m \angle A+m \angle B+90^{\circ}=180^{\circ}$
Substitute the angle measure of $\angle C$
$m \angle A+m \angle B=90^{\circ} \quad$ Subtract $90^{\circ}$ from both sides
The definition of complementary is that two angles add to $90^{\circ}$. So, we just showed that $m \angle A+$ $m \angle B=90^{\circ}$. Therefore $\angle A$ and $\angle B$ are complementary.

Example 11: Determine the angle measures.


Triangle $R T I$ is isosceles with $\overline{R T} \cong \overline{T I}$. The angles opposite the congruent sides are the base angles and must be congruent. So, $\angle R$ and $\angle I$ are the base angles and $\angle R \cong \angle I$. This means that $m \angle R=m \angle I=58^{\circ}$.

All angles of a triangle must add to $180^{\circ}$. So, $m \angle R+m \angle T+m \angle I=180^{\circ}$.

| $58^{\circ}+m \angle T+58^{\circ}=180^{\circ}$ | Substitute known values |
| :--- | :--- |
| $116^{\circ}+m \angle T=180^{\circ}$ | Combine constant values |

$\boldsymbol{m} \angle \boldsymbol{T}=\mathbf{6 4}^{\circ} \quad$ Subtract 116 from both sides

Example 12: Determine the angle measures.

$$
m \angle G=
$$



Triangle $A N G$ is isosceles with $\overline{N A} \cong \overline{N G}$. The angles opposite the congruent sides are the base angles and must be congruent. So, $\angle A$ and $\angle G$ are the base angles and $\angle A \cong \angle G$.

All angles of a triangle must add to $180^{\circ}$. So, $m \angle A+m \angle N+m \angle G=180^{\circ}$.
$m \angle A+90^{\circ}+m \angle G=180^{\circ} \quad$ Substitute known values
$90^{\circ}+2 m \angle G=180^{\circ} \quad$ Since $\angle A \cong \angle G$, we can say that there are basically two of one or the other angle.
$2 m \angle G=90^{\circ}$
$m \angle G=45^{\circ}$

Subtract 90 from each side
Divide by 2 on both sides

Example 13: Determine the angle measures.

$$
x=
$$



Let's label some angles to make references easier.

$a$ is a linear pair with the $110^{\circ}$ angle, so $a+110^{\circ}=180^{\circ}$, and $a=70^{\circ}$.
The triangle is isosceles with $b$ and $c$ as the base angles, so $b=c$.
$a+b+c=180^{\circ} \quad$ angles of a triangle
$70^{\circ}+b+c=180^{\circ} \quad$ substitute known values
$70^{\circ}+2 c=180^{\circ} \quad$ Since $b=c$, we can say that $b+c=c+c=2 c$
$2 c=110^{\circ} \quad$ subtract 70 from both sides
$c=55^{\circ} \quad$ divide by two on both sides
$\boldsymbol{x}=\mathbf{1 2 5}^{\circ} \quad x$ is a linear pair with $c$, so $x+55^{\circ}=180^{\circ}$.

Example 14: Find the measures.

$$
\begin{aligned}
& m \angle A= \\
& \text { of } \triangle A B C=
\end{aligned}
$$



All angles of a triangle must add to $180^{\circ}$. So, $m \angle A+m \angle B+m \angle C=180^{\circ}$.
$m \angle A+102^{\circ}+39^{\circ}=180^{\circ} \quad$ Substitute known values
$141^{\circ}+m \angle A=180^{\circ} \quad$ Combine constant values
$\boldsymbol{m} \angle \boldsymbol{A}=\mathbf{3 9}^{\circ} \quad$ Subtract 141 from both sides

Since, $m \angle A=m \angle C=39^{\circ}, \angle A$ and $\angle C$ are the base angles of an isosceles triangle with $\overline{A B} \cong$ $\overline{B C}$. This means that $m \overline{A B}=m \overline{B C}=13 \mathrm{~cm}$. So, $a=13 \mathrm{~cm}$.

To find $m \overline{A C}$, we can substitute 13 for $a . m \overline{A C}=a+7=13+7=20 \mathrm{~cm}$.
Perimeter of $\triangle \boldsymbol{A B C}=\mathbf{4 6} \mathbf{~ c m} \quad m \overline{A B}+m \overline{B C}+m \overline{A C}=13+13+20$

Example 15: Find the measures.
The perimeter of $\triangle L M O$
is $536 \mathrm{~m} . L M=$ $\qquad$ , $m \angle M=$ $\qquad$

$L M+M O+L O=536$
The perimeter of $\triangle L M O$ is 536 m
$L M+210+163=536$
Substitute known values
$L M+373=536$
Combine constant values
$L M=163 \mathrm{~m}$
Subtract 373 from both sides

Triangle $L M O$ is isosceles with $\overline{L M} \cong \overline{L O}$. The angles opposite the congruent sides are the base angles and must be congruent. So, $\angle M$ and $\angle O$ are the base angles, $\angle M \cong \angle O$, and $m \angle M=$ $m \angle O=x$.

All angles of a triangle must add to $180^{\circ}$. So, $m \angle L+m \angle M+m \angle O=180^{\circ}$.
$\left(x+30^{\circ}\right)+(x)+(x)=180^{\circ} \quad$ Substitute for angles
$3 x+30^{\circ}=180^{\circ}$
Combine like terms
$3 x=150^{\circ} \quad$ Subtract 30 from both sides
$x=50^{\circ}$
Divide by 3 on both sides
$\boldsymbol{m} \angle \boldsymbol{M}=50^{\circ}$

$$
m \angle M=m \angle O=x \text { and } x=50^{\circ}
$$

Example 16: Find the measures.
The perimeter of $\triangle Q R S$ is
$344 \mathrm{~cm} . m \angle Q=$ $\qquad$
$Q R=$ $\qquad$


Triangle $Q R S$ is isosceles with $\overline{Q R} \cong \overline{Q S}$. The angles opposite the congruent sides are the base angles and must be congruent. So, $\angle R$ and $\angle S$ are the base angles, $\angle R \cong \angle S$, and $m \angle R=$ $m \angle S=68^{\circ}$.

All angles of a triangle must add to $180^{\circ}$. So, $m \angle Q+m \angle R+m \angle S=180^{\circ}$.

| $m \angle Q+68^{\circ}+68^{\circ}=180^{\circ}$ | Substitute known values |
| :--- | :--- |
| $136^{\circ}+m \angle Q=180^{\circ}$ | Combine constant values |
| $\boldsymbol{m} \angle \boldsymbol{Q}=44^{\circ}$ | Subtract 136 from both sides |

$\overline{Q R} \cong \overline{Q S}, Q R=Q S=y+31 \mathrm{~cm}$
$Q R+R S+Q S=344 \quad$ The perimeter of $\triangle Q R S$ is 344 cm
$(y+31)+(y)+(y+31)=344$ Substitute for side values
$3 y+62=344$
Combine like terms
$3 y=282$
Subtract 62 from both sides
$y=94$
Divide by 3 on both sides
$Q R=125 \mathrm{~cm}$
$Q R=y+31=94+31=125$

