Lessons 11.1 \& 11.2 - Similar Polygons and Similar Triangles

Similar (\sim) - Two polygons are similar if and only if the corresponding angles are congruent and the corresponding sides are proportional.

AA Similarity Conjecture - If two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar.

SSS Similarity Conjecture - If two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar.

SSS Similarity
$\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{CA}}{\mathrm{FD}}$

E

SAS Similarity Conjecture - If two sides of one triangle are proportional to two sides of another triangle and the included angles are congruent, then the triangles are similar.

SAS Similarity $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$

The marked angles are congruent, and $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{DF}}$.

Example 1: Find the missing measurements. All measurements are in centimeters.
HAPIE $\sim N W Y R S$
$A P=$ \qquad
$E I=$ \qquad
$S N=$ \qquad
$Y R=$ \qquad

Since we are told that the two polygons are similar, we need to find corresponding sides on each figure that are known so that we can determine the constant of proportionality. You usually want to use the names of the figures to determine which sides are corresponding. $H A$ is corresponding to $N W$ and both are known.
$\frac{N W}{H A}=\frac{18}{6}=3$, so 3 is our constant of proportionality.
This means that to find a side length in the smaller figure, we will divide the larger figure measure by 3 . To find the side length in the larger figure, we will multiply the smaller figure measure by 3 .

To find side $A P$, we will use the length of its corresponding side $W Y$. Since $W Y$ is on the larger figure, we will divide its length by 3 to find the length of $A P$. So, $\frac{24}{3}=8$.

$A P=8 \mathrm{~cm}$

To find side $E I$, we will use the length of its corresponding side $S R$. Since $S R$ is on the larger figure, we will divide its length by 3 to find the length of $E I$. So, $\frac{21}{3}=7$.
$E I=7 \mathrm{~cm}$
To find side $S N$, we will use the length of its corresponding side $E H$. Since $E H$ is on the smaller figure, we will multiply its length by 3 to find the length of $S N$. So, $5 \cdot 3=15$.
$S N=15 \mathrm{~cm}$
To find side $Y R$, we will use the length of its corresponding side $P I$. Since $P I$ is on the smaller figure, we will multiply its length by 3 to find the length of $Y R$. So, $4 \cdot 3=12$.
$Y R=12 \mathrm{~cm}$

Example 2: Find the missing measurements. All measurements are in centimeters.
$Q U A D \sim S I M L$
$S L=$ \qquad
$M I=$ \qquad
$m \angle D=$ \qquad
$m \angle U=$ \qquad
$m \angle A=$ \qquad

Since we are told that the two polygons are similar, we need to find corresponding sides on each figure that are known so that we can determine the constant of proportionality. You usually want to use the names of the figures to determine which sides are corresponding. $Q U$ is corresponding to $S I$ and both are known.
$\frac{Q U}{S I}=\frac{20}{8}=2 \frac{1}{2}$, so $2 \frac{1}{2}$ is our constant of proportionality.
This means that to find a side length in the smaller figure, we will divide the larger figure measure by $2 \frac{1}{2}$. To find the side length in the larger figure, we will multiply the smaller figure measure by $2 \frac{1}{2}$.

To find side $S L$, we will use the length of its corresponding side $Q D$. Since $Q D$ is on the larger figure, we will divide its length by $2 \frac{1}{2}$ to find the length of $S L$. So, $\frac{13}{2 \frac{1}{2}}=5 \frac{1}{4}$.
$S L=5 \frac{1}{4} \mathrm{~cm}$
To find side $M I$, we will use the length of its corresponding side $A U$. Since $A U$ is on the larger figure, we will divide its length by $2 \frac{1}{2}$ to find the length of $M I$. So, $\frac{25}{2 \frac{1}{2}}=10$.
$M I=10 \mathrm{~cm}$
To find $m \angle D$, we will use the measure of its corresponding angle $m \angle L$. Since corresponding angles in similar figures must be congruent, we know that $m \angle D=m \angle L$.
$m \angle D=120^{\circ}$
To find $m \angle U$, we will use the measure of its corresponding angle $m \angle I$. Since corresponding angles in similar figures must be congruent, we know that $m \angle U=m \angle I$.
$m \angle U=85^{\circ}$
To find $m \angle A$, we will us the fact that $Q U A D$ is a quadrilateral and its angles must add to 360°. $m \angle Q+m \angle U+m \angle A+m \angle D=360^{\circ} \quad \Rightarrow \quad 75^{\circ}+85^{\circ}+m \angle A+120^{\circ}=360^{\circ} \quad \Rightarrow$ $280^{\circ}+m \angle A=360^{\circ}$.
$m \angle A=80^{\circ}$

Example 3: Determine whether or not the figures are similar. Explain why or why not.
$A B C D$ and $E F G H$

To determine whether two figures are similar, we need to verify two things:

1) Corresponding angles are congruent.
2) Corresponding sides are proportional.

Let's start by determining whether the first condition is true.
We can use the fact that $A B C D$ is a quadrilateral and its angles must add to 360° to find the missing angle measure.
$60^{\circ}+120^{\circ}+60^{\circ}+m \angle C=360^{\circ}$
$240^{\circ}+m \angle C=360^{\circ}$
$m \angle C=120^{\circ}$
We can use the fact that $E F G H$ is a quadrilateral and its angles must add to 360° to find the missing angle measure.
$120^{\circ}+60^{\circ}+120^{\circ}+m \angle H=360^{\circ}$
$300^{\circ}+m \angle H=360^{\circ}$
$m \angle H=60^{\circ}$
We can see that every angle in $A B C D$ has a congruent corresponding angle to an angle in $E F G H$.
Now, let's check if the corresponding sides are proportional.
We can see that sides $E F$ and $D C$ are corresponding. Sides $E H$ and $D A$ are also corresponding.
Sides $G H$ and $A B$ are also corresponding, but since they are equal in length to $E F$ and $D C$ we don't need to check them. Likewise for sides $G F$ and $C B$.

So, we need to know if $\frac{E F}{D C}=\frac{E H}{D A}$.
$\frac{E F}{D C}=\frac{15}{5}=3 \quad \frac{E H}{D A}=\frac{9}{3}=3$
Since both are equal, we can say that the sides are proportional.
$D C B A \sim E F G H$ because the corresponding angles are congruent and corresponding sides are proportional.

Example 4: Determine whether or not the figures are similar. Explain why or why not.
$\triangle A B C$ and $\triangle A D E$

To determine whether two figures are similar, we need to verify two things:

1) Corresponding angles are congruent.
2) Corresponding sides are proportional.

Let's start by determining whether the first condition is true.
$\angle A \cong \angle A$ because they are the same angle.
$\angle A D E \cong \angle A B C$ because they are corresponding angles on parallel lines
$\angle A E D \cong \angle A C B$ because they are corresponding angles on parallel lines
We can see that every angle in $\triangle A B C$ has a congruent corresponding angle to an angle in $\triangle A D E$.
Now, let's check if the corresponding sides are proportional.
Sides $D E$ and $B C$ are corresponding. Sides $A D$ and $A B$ are also corresponding. The final set of corresponding sides is $A E$ and $A C$.
**To find the length of side $A B$, we will need to add $A D+D B=4$.
${ }^{* *}$ To find the length of side $A C$ we will need to add $A D+E C=6$
We need to know if $\frac{B C}{D E}=\frac{A B}{A D}=\frac{A C}{A E}$.
$\frac{B C}{D E}=\frac{8}{4}=2$

$$
\frac{A B}{A D}=\frac{4}{2}=2 \quad \frac{A C}{A D}=\frac{6}{3}=2
$$

Since all are equal, we can say that the sides are proportional.
$\triangle A B C \sim \triangle A D E$ because the corresponding angles are congruent and corresponding sides are proportional.

Example 5: Determine whether or not the figures are similar. Explain why or why not.
JKON and JKLM

To determine whether two figures are similar, we need to verify two things:

1) Corresponding angles are congruent.
2) Corresponding sides are proportional.

Let's start by determining whether the first condition is true.
$\angle J \cong \angle J$ because they are the same angle.
$\angle K \cong \angle K$ because they are the same angle.
$\angle J N O \cong \angle J M L$ because they are corresponding angles on parallel lines
$\angle K O N \cong \angle K L M$ because they are corresponding angles on parallel lines
We can see that every angle in $J K O N$ has a congruent corresponding angle to an angle in $J K L M$.
Now, let's check if the corresponding sides are proportional.
Sides $M L$ and $N O$ are corresponding. Sides $J M$ and $J N$ are also corresponding. Sides $K L$ and $K O$ are corresponding. The final set of corresponding sides is $J K$ and $J K$.
${ }^{* *}$ To find the length of side $J M$, we will need to add $J N+N M=18$.
**To find the length of side $K L$ we will need to add $K O+O L=22$
We need to know if $\frac{M L}{N O}=\frac{J M}{J N}=\frac{K L}{K O}=\frac{J K}{J K}$.
$\frac{M L}{N O}=\frac{20}{10}=2 \quad \frac{J M}{J N}=\frac{18}{6}=3 \quad \frac{K L}{K O}=\frac{22}{8}=2 \frac{3}{4} \quad \frac{J K}{J K}=\frac{5}{5}=1$
Since all of the proportions are not equal, we must conclude that the figures are not similar.
$J K O N \nsim J K L M$ because the sides are not proportional.
**The line through \sim means "not".

Example 6: Find the missing measurements. All measurements are in centimeters.
$\triangle T A R \sim \triangle M A C$
$M C=$ \qquad

Since we are told that the two triangles are similar, we need to find corresponding sides on each figure that are known so that we can determine the constant of proportionality. You usually want to use the names of the figures to determine which sides are corresponding. $T A$ is corresponding to $M A$ and both are known.
$\frac{M A}{T A}=\frac{3}{2}=1 \frac{1}{2}$, so $1 \frac{1}{2}$ is our constant of proportionality.
This means that to find a side length in the smaller figure, we will divide the larger figure measure by $1 \frac{1}{2}$. To find the side length in the larger figure, we will multiply the smaller figure measure by $1 \frac{1}{2}$.

To find side $M C$, we will use the length of its corresponding side $R T$. Since $R T$ is on the smaller figure, we will multiply its length by $1 \frac{1}{2}$ to find the length of $M C$. So, $7 \cdot 1 \frac{1}{2}=10 \frac{1}{2}$.
$M C=10 \frac{1}{2} \mathrm{~cm}$

Example 7: Find the missing measurements. All measurements are in centimeters.
$\Delta X Y Z \sim \Delta Q R S$
$\angle Q \cong$ \qquad
$Q R=$ \qquad
$Q S=$ \qquad

Since we are told that the two triangles are similar, we need to find corresponding sides on each figure that are known so that we can determine the constant of proportionality. You usually want to use the names of the figures to determine which sides are corresponding. $Y Z$ is corresponding to $R S$ and both are known.
$\frac{Y Z}{R S}=\frac{20}{8}=2 \frac{1}{2}$, so $2 \frac{1}{2}$ is our constant of proportionality.
This means that to find a side length in the smaller figure, we will divide the larger figure measure by $2 \frac{1}{2}$. To find the side length in the larger figure, we will multiply the smaller figure measure by $2 \frac{1}{2}$.

To find side $Q R$, we will use the length of its corresponding side $X Y$. Since $X Y$ is on the larger figure, we will divide its length by $2 \frac{1}{2}$ to find the length of $Q R$. So, $\frac{12}{2 \frac{1}{2}}=4 \frac{4}{5}$.
$Q R=4 \frac{4}{5} \mathrm{~cm}$
To find side $Q S$, we will use the length of its corresponding side $X Z$. Since $X Z$ is on the larger figure, we will divide its length by $2 \frac{1}{2}$ to find the length of $Q S$. So, $\frac{28}{2 \frac{1}{2}}=11 \frac{1}{5}$.
$Q S=11 \frac{1}{5} \mathrm{~cm}$
The first question asks what $\angle Q$ is congruent to. It does not ask us to find a measure, so we will not be giving a numerical answer to that problem. We simply need to complete the statement with the congruent angle to $\angle Q$, which will be the corresponding angle.
$\angle Q \cong \angle X$

Example 8: Find the missing measurements. All measurements are in centimeters.
$\triangle A B C \sim \triangle E D C$
$\angle A \cong$ \qquad
$C D=$ \qquad
$A B=$ \qquad

Since we are told that the two triangles are similar, we need to find corresponding sides on each figure that are known so that we can determine the constant of proportionality. $A C$ is corresponding to $E C$ and both are known.
$\frac{E C}{A C}=\frac{20 \frac{1}{4}}{9}=2 \frac{1}{4}$, so $2 \frac{1}{4}$ is our constant of proportionality.
To find side $C D$, we will use the length of its corresponding side $C B$. Since $C B$ is on the smaller figure, we will multiply its length by $2 \frac{1}{4}$ to find the length of $C D$. So, $6 \cdot 2 \frac{1}{4}=13 \frac{1}{2}$.
$C D=13 \frac{1}{2} \mathrm{~cm}$
To find side $A B$, we will use the length of its corresponding side $E D$. Since $E D$ is on the larger figure, we will divide its length by $2 \frac{1}{4}$ to find the length of $Q S$. So, $\frac{22 \frac{1}{2}}{2 \frac{1}{4}}=10$.
$A B=10 \mathrm{~cm}$
The first question asks what $\angle A$ is congruent to which will be the corresponding angle.
$\angle A \cong \angle E$

Example 9: Find similar triangles. Explain why they are similar.

$\angle A \cong \angle E$ because they are alternate interior angles on parallel lines. $\angle B \cong \angle D$ because they are alternate interior angles on parallel lines.

Make sure that when you name figures, the names are order specific.

$\Delta A B C \sim \Delta E D C$ by AA similarity

Example 10: Find similar triangles. Explain why they are similar.

$\angle Q \cong \angle T$ because both are inscribed angles to the same arc.
$\angle P \cong \angle S$ because both are inscribed angles to the same arc.
Make sure that when you name figures, the names are order specific.
$\Delta P Q R \sim \Delta S T R$ by AA similarity

Example 11: Find similar triangles. Explain why they are similar.

$\angle L M K \cong \angle O N K$ because they are alternate interior angles on parallel lines.
$\angle M L K \cong \angle N O K$ because they are alternate interior angles on parallel lines.
Make sure that when you name figures, the names are order specific.
$\Delta K M L \sim \Delta K N O$ by AA similarity

