Lesson 9.3 - Two Special Right Triangles

Isosceles Right Triangle Conjecture - In an isosceles right triangle, if the legs have length x , then the hypotenuse has length $x \sqrt{2}$.

$30^{\circ}-60^{\circ}-90^{\circ}$ Triangle Conjecture - In a $30^{\circ}-60^{\circ}-90^{\circ}$, if the shorter side has length a, then the longer leg has length $a \sqrt{3}$, and the hypotenuse has length $2 a$.

Example 1: Find the exact value of the unknown measure.
$a=$ \qquad

We are given an isosceles right triangle so we will use the "Isosceles Right Triangle Conjecture."

We are given that $x=14$. Since $a=x \sqrt{2}$, we can substitute 14 for x to get $a=\mathbf{1 4} \sqrt{\mathbf{2}}$.

Example 2: Find the exact value of the unknown measure.
$a=$ \qquad , $b=$ \qquad

We are given a triangle that shows a 60° and a 90° angle. We can solve for the third angle to find that it is 30°. So, we will use the " $30^{\circ}-60^{\circ}-90^{\circ}$ Triangle Conjecture."

We are given that $a \sqrt{3}=12 \sqrt{3}$. So, we can solve for a.
$\frac{a \sqrt{3}}{\sqrt{3}}=\frac{12 \sqrt{3}}{\sqrt{3}}$
$a=a$
$a=12$
$b=2 a$
$b=2(12)$

$b=24$

Example 3: Find the exact value of the unknown measure.
$a=$ \qquad , $b=$ \qquad

We are given a triangle that shows a 30° and a 90° angle. We can solve for the third angle to find that it is 60°. So, we will use the " $30^{\circ}-60^{\circ}-90^{\circ}$ Triangle Conjecture."

We are given that $a=6$.
$b=a \sqrt{3}$
$b=6 \sqrt{3}$
$a=2 a$
$a=2$ (6)

$a=12$

Example 4: Find the area of rectangle $A B C D$

We are given a triangle that shows a 60° and we know a rectangle has 90° angles. We can solve for the third angle to find that it is 30°. So, we will use the " $30^{\circ}-60^{\circ}-90^{\circ}$ Triangle Conjecture."

We are given that $2 a=16$.

$$
\begin{aligned}
& \frac{2 a}{2}=\frac{16}{2} \\
& a=8 \\
& a \sqrt{3}=8 \sqrt{3}
\end{aligned}
$$

To find the area of a rectangle, we use $A=b h$.
$A=(8 \sqrt{3}) \cdot(8)$
$A=64 \sqrt{3}$ units 2

