Lesson 9.3 – Two Special Right Triangles

 $30^{\circ}-60^{\circ}-90^{\circ}$ Triangle Conjecture - In a $30^{\circ}-60^{\circ}-90^{\circ}$, if the shorter side has length *a*, then the longer leg has length $a\sqrt{3}$, and the hypotenuse has length 2a.

Example 1: Find the exact value of the unknown measure.

We are given an isosceles right triangle so we will use the "Isosceles Right Triangle Conjecture."

We are given that x = 14. Since $a = x\sqrt{2}$, we can substitute 14 for x to get $a = 14\sqrt{2}$.

Example 2: Find the exact value of the unknown measure.

We are given a triangle that shows a 60° and a 90° angle. We can solve for the third angle to find that it is 30° . So, we will use the " 30° - 60° - 90° Triangle Conjecture."

N

We are given that $a\sqrt{3} = 12\sqrt{3}$. So, we can solve for *a*.

$$\frac{a\sqrt{3}}{\sqrt{3}} = \frac{12\sqrt{3}}{\sqrt{3}}$$

$$a = a$$

$$a = 12$$

$$b = 2a$$

$$b = 2(12)$$

$$a\sqrt{3}$$

$$a\sqrt{3}$$

$$a\sqrt{3}$$

$$b = 2(12)$$

$$a\sqrt{3}$$

Example 3: Find the exact value of the unknown measure.

We are given a triangle that shows a 30° and a 90° angle. We can solve for the third angle to find that it is 60° . So, we will use the " 30° - 60° - 90° Triangle Conjecture."

We are given that a = 6.

Example 4: Find the area of rectangle ABCD

We are given a triangle that shows a 60° and we know a rectangle has 90° angles. We can solve for the third angle to find that it is 30° . So, we will use the " 30° - 60° - 90° Triangle Conjecture."

To find the area of a rectangle, we use A = bh. $A = (8\sqrt{3}) \cdot (8)$

