Section 9.2 - The Converse of the Pythagorean Theorem

Converse of the Pythagorean Theorem:

If the lengths of the three sides of a triangle satisfy the Pythagorean equation, then the triangle is a right triangle.

The Pythagorean Theorem:
In a right triangle, the sum of the squares of the lengths of the legs equals the square of the length of the hypotenuse.

**Remember that in a right triangle the hypotenuse should be the longest side.
Example 1: Is the triangle a right triangle?
Determine whether the triangle with side lengths 76,120 , and 98 is a right triangle.
**The longest side (120) would be the hypotenuse if this is a right triangle, so I will plug that in for c . The other two lengths would be the legs, so I will plug those in for a and b (which one goes into a or b does not matter)
$a^{2}+b^{2}=c^{2}$
$76^{2}+98^{2} \stackrel{?}{\stackrel{?}{=}} 120^{2} \quad * *$ We use $\stackrel{?}{\text { i }}$ to say we are trying to see if both sides of this relation are equal.
$5776+9604 \stackrel{?}{\stackrel{m}{=}} 14400$
**Now add the two numbers on the left side of the relation
$15380 \neq 14400$
Since the two sides of the relation are not equal this cannot be a right triangle.

Not a right triangle.

Example 2: Is the triangle a right triangle?

Determine whether the triangle with side lengths 221,204 , and 85 is a right triangle.
**The longest side (221) would be the hypotenuse if this is a right triangle, so I will plug that in for c . The other two lengths would be the legs, so I will plug those in for a and b (which one goes into a or b does not matter)
$a^{2}+b^{2}=c^{2}$
$204^{2}+85^{2} \stackrel{?}{=} 221^{2} \quad * *$ Square all the numbers (multiply them by themselves)
$41616+7225 \stackrel{?}{\stackrel{m}{=}} 48841 \quad * *$ Now add the two numbers on the left side of the relation
$48841=48841$
Since the two sides of the relation are equal this must be a right triangle.

Is a right triangle.

Example 3: Is the triangle a right triangle?

Determine whether the triangle with side lengths $5.0,1.4$, and 4.8 is a right triangle.
**The longest side (5.0) would be the hypotenuse if this is a right triangle, so I will plug that in for c . The other two lengths would be the legs, so I will plug those in for a and b (which one goes into a or b does not matter)
$a^{2}+b^{2}=c^{2}$
$1.4^{2}+4.8^{2} \stackrel{\stackrel{?}{m}}{=} 5.0^{2}$
$1.96+23.04 \stackrel{?}{\stackrel{n}{=}} 25.00$
$25.00=25.00$
Since the two sides of the relation are equal this must be a right triangle.

Is a right triangle.

Example 4：Is the triangle a right triangle？
Determine whether the triangle with side lengths 80,82 ，and 18 is a right triangle．
＊＊The longest side（82）would be the hypotenuse if this is a right triangle，so I will plug that in for c ．The other two lengths would be the legs，so I will plug those in for a and b （which one goes into a or b does not matter）
$a^{2}+b^{2}=c^{2}$
$80^{2}+18^{2} \stackrel{\text { 茼 }}{=} 82^{2}$
$6400+324 \stackrel{\text { 并 }}{=} 6724$
$6724=6724$
Since the two sides of the relation are equal this must be a right triangle．

Is a right triangle．

Example 5：Is the triangle a right triangle？

Determine whether the triangle with side lengths 3,4 ，and 6 is a right triangle．
＊＊The longest side（6）would be the hypotenuse if this is a right triangle，so I will plug that in for c．The other two lengths would be the legs，so I will plug those in for a and b （which one goes into a or b does not matter）
$a^{2}+b^{2}=c^{2}$
$3^{2}+4^{2} \stackrel{\text { ？}}{=} 6^{2}$
$9+16 \stackrel{\text { 弚 }}{=} 36$
$25 \neq 36$
Since the two sides of the relation are not equal this cannot be a right triangle．

Not a right triangle．

＊＊＊Don＇t forget that you may have to use some of the examples from section 9.1 to complete the homework！

