\qquad

In Exercises 1-8, find the area of the shaded region. The radius of each circle is r. If two circles are shown, r is the radius of the smaller circle and R is the radius of the larger circle.

1) $r=6 \mathrm{~cm}$

2) $r=8 \mathrm{~cm}$

3) $r=16 \mathrm{~cm}$

4) $r=2 \mathrm{~cm}$

5) $r=8 \mathrm{~cm}$

6) $R=7 \mathrm{~cm}$
$r=4 \mathrm{~cm}$

7) $r=2 \mathrm{~cm}$

8) $R=12 \mathrm{~cm}$ $r=9 \mathrm{~cm}$

\qquad
9) The shaded area is $12 \pi \mathrm{~cm}^{2}$. Find r.

10) The shaded area is $32 \pi \mathrm{~cm}^{2}$. Find r.

11) The shaded area is $120 \pi \mathrm{~cm}^{2}$, and the radius is 24 cm . Find x.

12) The shaded area is $10 \pi \mathrm{~cm}^{2}$. The radius of the large circle is 10 cm , and the radius of the small circle is 8 cm . Find x.

13) What is the area of the shaded region?

14) What is the area of the shaded region?

