Lesson 8.6 - Areas of Slices of Circles

A sector of a circle is the region between two radii and an arc of the circle.

Sector of a circle

A segment of a circle in the region between a chord and an arc of a circle.

An annulus is the region between two concentric circles.

Annulus

Segment of a circle

Sector Area Conjecture - The area of a sector is given by the formula $A_{\text {sector }}=\frac{a}{360} \pi r^{2}$ where A is the area, a is the arc measure, and r is the radius of the circle.

$\frac{a}{360} \cdot \pi r^{2}=A_{\text {sector }}$

Segment Area Conjecture - The area of a segment is given by the formula $A_{\text {segment }}=\frac{a}{360} \pi r^{2}-$ $\frac{1}{2} b h$ where A is the area, a is the arc measure, r is the radius of the circle, b is the length of the chord, and h is the height of the triangle.

$$
\frac{a}{360} \pi r^{2}-\frac{1}{2} b h=A_{\text {segment }}
$$

Annulus Area Conjecture - The area of an annulus is given by the formula $A_{\text {annulus }}=\pi R^{2}-$ πr^{2} where A is the area, R is the radius of the large circle, and r is the radius of the small circle.

Example 1: Area of a sector

Example 2: Area of a sector

Remember that we are finding the area of the shaded region. So, the central angle of the shaded region is $360^{\circ}-120^{\circ}=240^{\circ}$. The measures of the arc is equal to the measure of the central angle that forms it. So, $a=240^{\circ}$.

$$
\begin{array}{ll}
A_{\text {sector }}=\frac{a}{360} \pi r^{2} & \\
a=240, r=4 & \\
A=\frac{240}{360} \pi(4)^{2} & \\
A=\frac{2}{3} \pi(16) & * * \frac{240 \div 120}{360 \div 120}=\frac{2}{3} . \\
A=\frac{2}{3}(16) \pi & * * \frac{2}{3} \cdot \frac{16}{1}=\frac{32}{3} . \\
A=\frac{32}{3} \pi & \text { or } \quad A=10 \frac{2}{3} \pi \\
A=\frac{32}{3} \boldsymbol{\pi} \mathbf{c m}^{2} & \text { or } A=\mathbf{1 0} \frac{2}{3} \boldsymbol{\pi} \mathbf{c m}^{2}
\end{array}
$$

Example 3: Area of an annulus

$A_{\text {annulus }}=\pi R^{2}-\pi r^{2}$
$R=4, r=2$
$A=\pi(4)^{2}-\pi(2)^{2}$
$A=\pi(16)-\pi(4)$
$A=16 \pi-4 \pi$
**Since both of these terms have π, we can combine them.
$A=12 \pi$
$A=12 \pi \mathrm{~cm}^{2}$

Example 4: Area of a segment

To find the missing central angle: $360^{\circ}-135^{\circ}-135^{\circ}=90^{\circ}$
So, the arc of the segment is 90°.

The other radius of the circle must also be 8 cm .
Since the two radii of the circle meet at right angles, they can be the base and height of the triangle.

$$
\begin{array}{ll}
A_{\text {segment }}=\frac{a}{360} \pi r^{2}-\frac{1}{2} b h & \\
a=90, r=8, b=8, h=8 & \\
A=\frac{90}{360} \pi(8)^{2}-\frac{1}{2}(8)(8) & * * \frac{90 \div 90}{360 \div 90}=\frac{1}{4} . \\
A=\frac{1}{4} \pi(64)-\frac{1}{2}(64) & \begin{array}{ll}
& \\
A=\frac{1}{4}(64) \pi-32 & \text { terms and we must keep them separate in our answer. } \\
A=16 \pi-32 &
\end{array} \\
A=(\mathbf{1 6 \pi}-\mathbf{3 2}) \mathbf{c m}^{2} &
\end{array}
$$

Example 5: Area of a sector of an annulus

The formula for an annulus applies, but we don't want the area of the entire annulus. We want a portion of the annulus. So, we will modify the annulus area conjecture ($A_{\text {annulus }}=\pi R^{2}-\pi r^{2}$).

We want half of the annulus, or 180° of the 360° of the annulus $\left(\frac{180^{\circ}}{360^{\circ}}=\frac{1}{2}\right)$.
So, we will use the formula $A=\frac{180}{360}\left(\pi R^{2}-\pi r^{2}\right)$ or $A=\frac{1}{2}\left(\pi R^{2}-\pi r^{2}\right)$.

$A=\frac{180}{360}\left(\pi R^{2}-\pi r^{2}\right)=\frac{1}{2}\left(\pi R^{2}-\pi r^{2}\right)$
$R=6, r=3$
$A=\frac{1}{2}\left(\pi(6)^{2}-\pi(3)^{2}\right)$
$A=\frac{1}{2}(\pi(36)-\pi(9))$
$A=\frac{1}{2}(36 \pi-9 \pi)$
$A=\frac{1}{2}(27 \pi)$
$A=13.5 \pi$
$A=13.5 \pi \mathrm{~cm}^{2}$

Example 6: Area of a sector of an annulus

We will modify the annulus area conjecture ($A_{\text {annulus }}=\pi R^{2}-\pi r^{2}$) very similarly to Example 5. This time we only want 45° of the 360°.
$A=\frac{45}{360}\left(\pi R^{2}-\pi r^{2}\right)$
$R=12, r=8$
$A=\frac{1}{8}\left(\pi(12)^{2}-\pi(8)^{2}\right)$
** $\frac{45 \div 45}{360 \div 45}=\frac{1}{8}$
$A=\frac{1}{8}(\pi(144)-\pi(64))$
$A=\frac{1}{8}(144 \pi-64 \pi)$
$A=\frac{1}{8}(80 \pi)$
$* * \frac{1}{8} \cdot \frac{80}{1}=\frac{80}{8}=10$
$A=10 \pi$
$A=10 \pi \mathrm{~cm}^{2}$

Example 7: Finding a radius given area of a sector

Shaded area is $40 \pi \mathrm{~cm}^{2}$. Find r.

$$
\begin{aligned}
& A_{\text {sector }}=\frac{a}{360} \pi r^{2} \\
& A=40 \pi, a=144 \\
& 40 \pi=\frac{144}{360} \pi r^{2} \\
& \frac{40 \pi}{\pi}=\frac{\frac{144}{360} \pi r^{2}}{\pi} \\
& 40=\frac{144}{360} r^{2} \\
& 40=\frac{2}{5} r^{2} \\
& \frac{5}{2} \cdot 40=\frac{5}{2} \cdot \frac{2}{5} r^{2}
\end{aligned}
$$

$$
* * \frac{144 \div 72}{360 \div 72}=\frac{2}{5}
$$

**Multiplying both sides by the reciprocal (flip) of the fraction will cancel the fraction out.

$$
\begin{aligned}
& 16=r^{2} \\
& \sqrt{16}=\sqrt{r^{2}} \\
& 4=r \\
& r=4 \mathrm{~cm}
\end{aligned}
$$

Example 8: Finding the measure of a central angle given the area of a sector

Shaded area is $54 \pi \mathrm{~cm}^{2}$. Find x.
$A_{\text {sector }}=\frac{a}{360} \pi r^{2}$
$A=54 \pi, r=12$
$54 \pi=\frac{x}{360} \pi(12)^{2}$
$\frac{54 \pi}{\pi}=\frac{\frac{x}{360} \pi(12)^{2}}{\pi}$
$54=\frac{x}{360}(12)^{2}$
$54=\frac{x}{360} \cdot 144$
$360 \cdot 54=360 \cdot \frac{x}{360} \cdot 144$
$19440=x \cdot 144$
$\frac{19440}{144}=\frac{x \cdot 144}{144}$
$135=x$
$x=135^{\circ}$

Example 9: Finding a missing radius given area of an annulus

Shaded area is $51 \pi \mathrm{~cm}^{2}$. The diameter of the larger circle is 20 cm . Find x.
The diameter of the larger circle is $20 \mathrm{~cm} . r=\frac{20}{2}=10$. So, the radius is 10 cm .

$$
\begin{aligned}
& A_{\text {annulus }}=\pi R^{2}-\pi r^{2} \\
& A=51 \pi, R=10 \\
& 51 \pi=\pi(10)^{2}-\pi r^{2} \\
& 51 \pi=100 \pi-\pi r^{2} \\
& \frac{51 \pi}{\pi}=\frac{100 \pi-\pi r^{2}}{\pi} \\
& 51=100-r^{2} \\
& -49=-r^{2} \\
& 49=r^{2} \\
& \sqrt{49}=\sqrt{r^{2}} \\
& 7=r \\
& r=7 \mathrm{~cm}
\end{aligned}
$$

$$
51=100-r^{2} \quad * * \text { Since there was a } \pi \text { in each term they can all cancel out }
$$

**Both sides of the equation are negative, so we can turn them both positive.

