Lesson 8.5 - Area of Circles

Circle Area Conjecture - The area of a circle is given by the formula $A=\pi r^{2}$ where A is the area and r is the radius of the circle.

**When working with area, we must ALWAYS work from radius.
***In this lesson it will be important to distinguish between \approx and $=$. Any time you are asked to calculate a value with an $=$, you will leave the answer in terms of π. Any time you asked to calculate a value with an \approx, you will calculate the value by multiplying π out.

Example 1: Find exact area of a circle given radius

If $r=9 \mathrm{~cm}, A=$ \qquad
$A=\pi r^{2}$
$A=\pi(9)^{2} \quad * *$ To square a number, you can either multiply it by itself or use the exponent button on your calculator.

$A=\pi(81)$
$\boldsymbol{A}=\mathbf{8 1} \boldsymbol{\pi} \mathbf{c m}^{2} \quad * *$ Because this problem gave us an "equal sign", we leave our answer in terms of π.

Example 2: Find exact area of a circle given diameter

If $d=6.4 \mathrm{~cm}, A=$ \qquad
We are given diameter, but we need radius. Remember that radius is half of the diameter.
$r=\frac{6.4}{2}=3.2$
$A=\pi r^{2}$
$A=\pi(3.2)^{2}$
$A=\pi(10.24)$
$\boldsymbol{A}=\mathbf{1 0 . 2 4 \pi} \mathbf{c m}^{2} \quad * *$ Because this problem gave us an "equal sign", we leave our answer in terms of π.

Example 3: Find radius and diameter given exact area
If $A=529 \pi \mathrm{~cm}^{2}, r=$ \qquad ,$d=$ \qquad
This problem will have two answers.
$A=\pi r^{2}$
$529 \pi=\pi r^{2} \quad * *$ Since there is a π on both sides of the equation, we can divide it out.
$\frac{529 \pi}{\pi}=\frac{\pi r^{2}}{\pi}$
$529=r^{2}$
**To undo a square, we must square root.

	-					\% ${ }^{\text {a }}$	88\%45		
	deg								
	7	8	9	\div	\otimes	w	${ }^{\text {a }}$ D	\%	
	4	5	6	*			cos		
	1	2	3	-		π			
$\sqrt{529}=\sqrt{r^{2}}$	\bigcirc	.		+	$=$,)		
$23=r$									
$r=23 \mathrm{~cm}$	**R	mb	at	is	leng	so	pow	on	he units is 1.
$d=23 \cdot 2=46$									
$d=46 \mathrm{~cm}$									

Example 4: Find exact area given circumference
If $C=36 \pi \mathrm{ft}, A=$ \qquad
$C=\pi d$
$36 \pi=\pi d$
$\frac{36 \pi}{\pi}=\frac{\pi d}{\pi}$
$36=d$
$r=\frac{36}{2}=18$
$A=\pi r^{2}$
$A=\pi(18)^{2}$
$A=\pi(324)$
$\boldsymbol{A}=\mathbf{3 2 4} \boldsymbol{\pi} \mathbf{f t}^{\mathbf{2}} \quad * *$ Because this problem gave us an "equal sign", we leave our answer in terms of π.

Example 5: Find exact circumference given area
If $A=196 \pi \mathrm{in}^{2}, C=$ \qquad
$A=\pi r^{2}$
$196 \pi=\pi r^{2}$
$\frac{196 \pi}{\pi}=\frac{\pi r^{2}}{\pi}$
$196=r^{2}$
$\sqrt{196}=\sqrt{r^{2}}$
$14=r$
$d=14 \cdot 2=28$
$C=\pi d$
$C=\pi(28)$
$\boldsymbol{C}=\mathbf{2 8} \boldsymbol{\pi}$ in $\quad * *$ Because this problem gave us an "equal sign", we leave our answer in terms of π.

Example 6: Find approximate area given radius

If $r=7.8 \mathrm{~cm}, A \approx$ \qquad
$A=\pi r^{2}$
$A=\pi(7.8)^{2}$
$A=\pi(60.84)$
$A \approx 191.13 \mathbf{c m}^{2} \quad * *$ Because this problem gave us an "approximate sign", we multiply π out (take $60.84 \cdot \pi$).

Example 7: Find approximate area given diameter

If $d=3.12, A \approx$ \qquad
We are given diameter, but we need radius. Remember that radius is half of the diameter.
$r=\frac{3.12}{2}=1.56$
$A=\pi r^{2}$
$A=\pi(1.56)^{2}$
$A=\pi(2.4336)$
$A \approx 7.65$ units $^{2} \quad * *$ Because this problem gave us an "approximate sign", we multiply π out.
** If the problem does not give you units (cm, in, ft , etc.), just write "units" as the unit of measure.

Example 8: Find radius and diameter given area
If $A=907.9 \mathrm{~m}^{2}, r \approx$ \qquad ,$d \approx$ \qquad
This problem will have two answers.
$A=\pi r^{2}$
$907.9=\pi r^{2}$
$\frac{907.9}{\pi}=\frac{\pi r^{2}}{\pi}$
$288.99 \approx r^{2}$
**You will actually calculate $\frac{907.9}{\pi}$ and round (which is why this now becomes \approx.
$\sqrt{288.99} \approx \sqrt{r^{2}}$
$17 \approx r$
**You will have to round.
$r \approx 17 \mathrm{~m}$
$d \approx 17 \cdot 2=38$
$d \approx 38 \mathrm{~m}$

Example 9: Find approximate area given circumference

If $C=7.85, A \approx$ \qquad
$C=\pi d$
$7.85=\pi d$
$\frac{7.85}{\pi}=\frac{\pi d}{\pi}$
$2.50 \approx d \quad * *$ You calculate $\frac{7.85}{\pi}$ and round (which is why this becomes \approx).
$r \approx \frac{2.50}{2} \approx 1.25$
$A=\pi r^{2}$
$A \approx \pi(1.25)^{2}$
$A \approx \pi(1.5625)$
$\boldsymbol{A}=4.91$ units $^{2} \quad * *$ Because this problem gave us an "approximate sign", we multiply π out.
** If the problem does not give you units (cm, in, ft, etc.), just write "units" as the unit of measure.

Example 10: Find approximate circumference given area
If $A=136.46 \mathrm{in}^{2}, C \approx$ \qquad
$A=\pi r^{2}$
$136.46=\pi r^{2}$
$\frac{136.46}{\pi}=\frac{\pi r^{2}}{\pi}$
$43.44 \approx r^{2}$
**You calculate $\frac{136.46}{\pi}$ and round (which is why this becomes \approx).
$\sqrt{43.44} \approx \sqrt{r^{2}}$
$6.59 \approx r$
$d \approx 6.59 \cdot 2 \approx 13.18$
$C=\pi d$
$C \approx \pi(13.18)$
$\boldsymbol{C} \approx 41.41$ in $\quad * *$ Because this problem gave us an "approximate sign", we multiply π out.

