
Lesson 8.5 – Area of Circles

Circle Area Conjecture - The area of a circle is given by the formula $A = \pi r^2$ where A is the area and r is the radius of the circle.

**When working with area, we must ALWAYS work from radius.

***In this lesson it will be important to distinguish between \approx and =. Any time you are asked to calculate a value with an =, you will leave the answer in terms of π . Any time you asked to calculate a value with an \approx , you will calculate the value by multiplying π out.

Example 1: Find exact area of a circle given radius

If r = 9 cm, A =_____

 $A = \pi r^2$

 $A = \pi(9)^2$

**To square a number, you can either multiply it by itself or use the exponent button on your calculator.

 $A = \pi(81)$

$$A = 81\pi \text{ cm}^2$$

**Because this problem gave us an "equal sign", we leave our answer in terms of π .

Example 2: Find exact area of a circle given diameter

If d = 6.4 cm, A =

r

We are given diameter, but we need radius. Remember that radius is half of the diameter.

$$r = \frac{6.4}{2} = 3.2$$

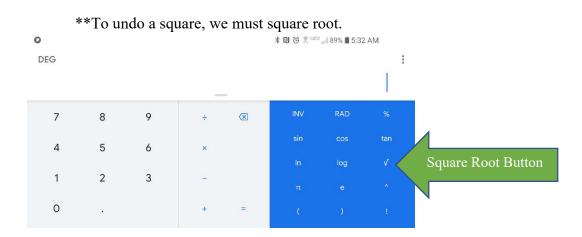
$$A = \pi r^{2}$$

$$A = \pi (3.2)^{2}$$

$$A = \pi (10.24)$$

$$A = 10.24\pi \text{ cm}^{2} \qquad \text{**Because this problem gave us an "equal sign", terms of π .$$

Example 3: Find radius and diameter given exact area


If $A = 529\pi$ cm², r =____, d =_____

This problem will have two answers.

 $A = \pi r^2$

 $529\pi = \pi r^2$ **Since there is a π on both sides of the equation, we can divide it out.

 $529\pi \pi r^2$ $\frac{1}{\pi} = \frac{\pi}{\pi}$ $529 = r^2$

we leave our answer in

$$\int_{\text{DEG}} \frac{100 \text{ K}^{\text{Her}} \text{ (REW II 533 M}}{\sqrt{529}}$$

$$= \sqrt{529}$$

$$\sqrt{529} = \sqrt{r^2}$$

$$23 = r$$

$$r = 23 \text{ cm}$$

$$* \text{Remember that radius is a length, so the power on the units is 1.}$$

$$d = 23 \cdot 2 = 46$$

$$d = 46 \text{ cm}$$

Example 4: Find exact area given circumference

If $C = 36\pi$ ft, A =____ $C = \pi d$ $36\pi = \pi d$ $\frac{36\pi}{\pi} = \frac{\pi d}{\pi}$ 36 = d $r = \frac{36}{2} = 18$ $A = \pi r^2$ $A = \pi (18)^2$ $A = \pi (324)$ $A = 324\pi$ ft² **Because the

**Because this problem gave us an "equal sign", we leave our answer in terms of π .

T	1	~	T. 1		•	C	•	
HVami	1 P	` .	Hind	evact	circiim	terence	auven	area
L'Ann	JIC	J.	1 mu	Craci	circuitt	ference	givun	arca

If $A = 196\pi$ in², C =_____ $A=\pi r^2$ $196\pi = \pi r^2$ $\frac{196\pi}{\pi} = \frac{\pi r^2}{\pi}$ $196 = r^2$ $\sqrt{196} = \sqrt{r^2}$ 14 = r $d = 14 \cdot 2 = 28$ $C = \pi d$ $C = \pi(28)$ $C=28\pi$ in **Because this problem gave us an "equal sign", we leave our answer in

terms of π .

Example 6: Find approximate area given radius

Example 6.1 ma approximate area given rudius								
If $r = 7.8 \text{ cm}, A \approx$								
$A = \pi r^2$								
$A = \pi (7.8)^2$								
$A = \pi(60.84)$								
$A \approx 191.13 \text{ cm}^2$	**Because this problem gave us an "approximate sign", we multiply π out (take 60.84 $\cdot \pi$).							
	0		* 図 谷 常 ^{□133} , all 84% ■ 5:51 AM					
	DEG					i		
			_			60.84×π		
	7	8	9	÷	\boxtimes	INV RAD %		
	4	5	6	×		sin cos tan		
						in g √		
	1	2	3	-		π π Button		
	0			+	=	C I		

Example 7: Find approximate area given diameter

If $d = 3.12, A \approx$ _____

We are given diameter, but we need radius. Remember that radius is half of the diameter.

$$r = \frac{3.12}{2} = 1.56$$

$$A = \pi r^{2}$$

$$A = \pi (1.56)^{2}$$

$$A = \pi (2.4336)$$

$$A \approx 7.65 \text{ units}^{2}$$
**Because this problem gave us an "approximate sign", we multiply π out.
**If the problem does not give you units (cm, in, ft, etc.), just write
"units" as the unit of measure.

Example 8: Find radius and diameter given area

If $A = 907.9 \text{ m}^2, r \approx ____, d \approx _____$ This problem will have two answers. $A = \pi r^2$ $907.9 = \pi r^2$ $\frac{907.9}{\pi} = \frac{\pi r^2}{\pi}$ $288.99 \approx r^2$ **You will actually calculate $\frac{907.9}{\pi}$ and round (which is why this now becomes \approx . $\sqrt{288.99} \approx \sqrt{r^2}$ $17 \approx r$ **You will have to round.

 $r \approx 17 \text{ m}$

 $d \approx 17 \cdot 2 = 38$

 $d \approx 38 \text{ m}$

If $C = 7.85, A \approx$	
$C = \pi d$	
$7.85 = \pi d$	
$\frac{7.85}{\pi} = \frac{\pi d}{\pi}$	
$2.50 \approx d$	**You calculate $\frac{7.85}{\pi}$ and round (which is why this becomes \approx).
$r \approx \frac{2.50}{2} \approx 1.25$	
$A = \pi r^2$	
$A\approx\pi(1.25)^2$	
$A\approx\pi(1.5625)$	
$A = 4.91 \text{ units}^2$	**Because this problem gave us an "approximate sign", we multiply a out.
	**If the problem does not give you units (cm, in, ft, etc.), just write "units" as the unit of measure.

π

Example 10: Find approximate circumference given area

Example 9: Find approximate area given circumference

If
$$A = 136.46 \text{ in}^2$$
, $C \approx \underline{\qquad}$
 $A = \pi r^2$
 $136.46 = \pi r^2$
 $\frac{136.46}{\pi} = \frac{\pi r^2}{\pi}$
 $43.44 \approx r^2$ **You calculate $\frac{136.46}{\pi}$ and round (which is why this becomes \approx).
 $\sqrt{43.44} \approx \sqrt{r^2}$
 $6.59 \approx r$
 $d \approx 6.59 \cdot 2 \approx 13.18$
 $C = \pi d$
 $C \approx \pi(13.18)$
 $C \approx 41.41$ in **Because this problem gave us an "approximate sign", we multiply π out.