Lesson 8.4 - Areas of Regular Polygons

***Remember that a regular polygon is one that is equiangular (all angles are congruent) and equilateral (all sides are congruent)

An apothem of a regular polygon is a perpendicular segment from the center of the polygon's circumscribed circle to a side of the polygon.

Regular Polygon Area Conjecture - The area of a regular polygon is given by the formula $A=$ $\frac{1}{2} a s n$ or $A=\frac{1}{2} a P$, where A is the area, P is the perimeter, a is the apothem, s is the length of each side, and n is the number of sides.

Regular pentagon

Regular hexagon

Regular heptagon
**Notice that there are two formulas for area of a regular polygon. Which one you use will depend on what information you are given, or what information you are asked for.
${ }^{* *}$ As you go through this lesson, keep in mind there is a difference between A and a.
**You will see \approx and $=$ as you go through these notes. \approx means "approximately".

Example 1: Finding area of a regular polygon given apothem, side length, and number of sides

$$
s=12 \mathrm{~cm} \quad a \approx 14.5 \mathrm{~cm} \quad A \approx ?
$$

Because we are given side length, we will use $A=\frac{1}{2}$ asn. We are explicitly given the side length and apothem length. To find the number of sides, we must count. The polygon is an octagon, so the number of sides is 8 .
$a \approx 14.5, s=12, n=8$
$A \approx \frac{1}{2}(14.5)(12)(8) \quad * *$ To calculate this, you can turn the $\frac{1}{2}$ into a 0.5 and multiply (i.e. $0.5 \cdot 14.5 \cdot 12 \cdot 8$) or you can multiply the three non-fractional numbers and then divide by 2 (i.e. $\left(\frac{14.5 \cdot 12 \cdot 8}{2}\right)$). Both methods will give you the same answer.
$A \approx 696$
The area is about $696 \mathbf{c m}^{2}$.

Example 2: Finding area of a regular polygon given apothem and perimeter

Regular hexagon: $a \approx 15$ in and $P=45 \mathrm{in}, A \approx$ \qquad $?$

Because we are given perimeter, we will use $A=\frac{1}{2} a P$. This means that it doesn't actually matter that the figure is a hexagon or has 6 sides.

$$
\begin{aligned}
& A \approx \frac{1}{2}(15)(45) \\
& A \approx 337.5
\end{aligned}
$$

The area is about $337.5 \mathbf{~ i n}^{2}$.

Example 3: Finding apothem length given area, side length, and number of sides

$$
s=4.2 \mathrm{~cm} \quad A \approx 197 \mathrm{~cm}^{2}
$$

$$
a \approx \quad ?
$$

Since we are given side length, we will use $A=\frac{1}{2}$ asn .
$A \approx 197, s=4.2, n=12$
$197 \approx \frac{1}{2}(a)(4.2)(12)$
$197 \approx \frac{1}{2}(4.2)(12)(a) \quad * *$ We can reorder the multiplication however we want, so I shifted all the numbers to the front of the multiplication problem and the variable to the end so that we can calculate.
$197 \approx 25.2(a)$
$* * \frac{1}{2}(4.2)(12)=25.2$
$\frac{197}{25.2} \approx \frac{25.2 a}{25.2}$
$7.82 \approx a$
The apothem length is about 7.82 cm .

Example 4: Finding side length given area, apothem length, and number of sides
Regular pentagon: $a \approx 1.2 \mathrm{~m}, A \approx 9 \mathrm{~m}^{2}$. Find s.

Since we are asked to find side length, we will use $A=\frac{1}{2} a s n$. We know that the figure is a pentagon and has 5 sides.
$A \approx 9, a \approx 1.2, n=5$
$9=\frac{1}{2}(1.2)(s)(5)$
$9=\frac{1}{2}(1.2)(5)(s)$
$9=3 s$
$\frac{9}{3}=\frac{3 s}{3}$
$3=s$
The side length is $\mathbf{3} \mathbf{~ m}$.

Example 5: Finding number of sides given area, apothem length, and side length
In a regular n-gon, $s=4.8 \mathrm{~cm}, a \approx 7.4 \mathrm{~cm}$, and $A \approx 177.6 \mathrm{~cm}^{2}$. Find n.

Since we are given side length, we will use $A=\frac{1}{2}$ asn.
$A \approx 177.6, a \approx 7.4, s=4.8$
$177.6=\frac{1}{2}(7.4)(4.8)(n)$
$177.6=17.76 n$
$\frac{177.6}{17.76}=\frac{17.76 n}{n}$
$10=n$
The polygon has $\mathbf{1 0}$ sides. $\quad * *$ We are finding number of sides on this one, not a length.

Example 6: Finding apothem length given area and perimeter
Regular n-gon: $P=45 \mathrm{ft}, A \approx 126 \mathrm{ft}^{2}, a \approx$ \qquad ?

Because we are given perimeter, we will use $A=\frac{1}{2} a P$. This means that it doesn't actually matter that how many sides the figure has.
$A \approx 126, P=45$
$126=\frac{1}{2}(a)(45)$
$126=\frac{1}{2}(45)(a)$
$126=22.5 a$
$\frac{126}{22.5}=\frac{22.5 a}{a}$
$5.6 \approx a$
The apothem length is approximately $\mathbf{5 . 6} \mathbf{f t}$.

Example 7: Finding perimeter given area and apothem

$$
a=6 \mathrm{~cm}
$$

$$
A \approx 130.8 \mathrm{~cm}^{2}
$$

$$
P \approx \quad ?
$$

Because we are asked to find perimeter, we will use $A=\frac{1}{2} a P$. This means that it doesn't actually matter that the figure is a pentagon or has 5 sides.
$A \approx 130.8, a=6$
$130.8=\frac{1}{2}(6)(P)$
$130.8=3 P$
$\frac{130.8}{3}=\frac{3 P}{3}$
$43.6 \approx P$
The perimeter of the pentagon is approximately 43.6 cm .

