Lesson 8.2 - Areas of Triangles, Trapezoids, and Kites

***Remember to pay attention to units. Units of area should be squared (power of 2). Units of length like base, height, and perimeter should have a power of 1 .

Triangle Area Conjecture - The area of a triangle is given by the formula $A=\frac{1}{2} b h$, where A is the area, b is the length of the base, and h is the height of the triangle. The base and height must be perpendicular.

Example 1: Finding area of a triangle given base and height

11 in

$$
A=
$$

$$
?
$$

***Remember that base and height of a triangle must be perpendicular (meet at a right angle). This means that the 11 in is just extra information that we don't need to use.
$A=\frac{1}{2} b h$
$b=12, h=7.1$
$A=\frac{1}{2}(12)(7.1) \quad * *$ To calculate this, you can turn the $\frac{1}{2}$ into a 0.5 and multiply (i.e. $0.5 \cdot$
$12 \cdot 7.1$) or you can multiply 12 and 7.1 and then divide by 2 (i.e. $\left(\frac{12 \cdot 7.1}{2}\right)$).
Both methods will give you the same answer.
$A=42.6$
The area is $\mathbf{4 2 . 6} \mathbf{~ i n}^{2}$.

Example 2: Finding height of a triangle given area and base

$$
A=64 \mathrm{ft}^{2} \quad h=\underline{?}
$$

$A=\frac{1}{2} b h$
$A=64, b=8$
$64=\frac{1}{2}(8)(h)$
$64=(4)(h) \quad * *$ We can multiply the $\frac{1}{2} \cdot 8$ as $0.5 \cdot 8$ or think of this as half of 8.
$\frac{64}{4}=\frac{(4)(h)}{4}$
$16=h$
The height is $\mathbf{1 6} \mathbf{f t}$.

Example 3: Finding base of a triangle given area and height

$$
\text { Area }=26.1 \mathrm{in}^{2}
$$

$$
b=\underline{?}
$$

$A=\frac{1}{2} b h$
$A=26.1, h=6$
$26.1=\frac{1}{2}(b)(6)$
$26.1=(3)(b) \quad * *$ We can reorder the multiplication in this problem so that our numbers are together and our variable is last $\left(\frac{1}{2}(6)(b)\right)$. This allows us to calculate as we did in Example 2.
$\frac{26.1}{3}=\frac{(3)(b)}{3}$
$8.7=b$
The base is 8.7 in .

Example 4: Finding perimeter of a triangle

Area $=29.5 \mathrm{mi}^{2}$

$$
P=\underline{?}
$$

We will need to use the area to find the remaining side which will help us find perimeter.
$A=\frac{1}{2} b h$
$A=29.5, h=5$
$29.5=\frac{1}{2}(b)(5)$
$29.5=(2.5)(b)$
$\frac{29.5}{2.5}=\frac{(2.5)(b)}{2.5}$
$11.8=b$

$$
P=9.3+7.5+11.8=28.6
$$

The perimeter is $\mathbf{2 8 . 6} \mathbf{~ m i}$.

Example 5: Finding area of a triangle given perimeter, height, and two sides

We can use the perimeter to find the length of the third side that will be the base of the triangle.

$$
\begin{aligned}
& 31.7=10.3+10.4+x \\
& 31.7=20.7+x \\
& 11=x
\end{aligned}
$$

$$
\begin{aligned}
& A=\frac{1}{2} b h \\
& b=11, h=8.8 \\
& A=\frac{1}{2}(11)(8.8) \\
& A=48.4
\end{aligned}
$$

The area is $\mathbf{4 8 . 4} \mathbf{~ y d}^{\mathbf{2}}$.

Trapezoid Area Conjecture - The area of a trapezoid is given by the formula $A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$, where A is the area, b_{1} and b_{2} are the lengths of the bases, and h is the height of the trapezoid. The height must be perpendicular to both bases of the trapezoid.

Example 6: Finding area of a trapezoid

$$
A=\underline{?}
$$

The bases of a trapezoid are always the parallel sides. So, the bases will be the 2.4 cm and 7 cm sides. The other two sides are just extra, an unnecessary, information.
$A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$
$b_{1}=7, b_{2}=2.4, h=2 \quad * *$ It doesn't matter which base you call b_{1} and which base you call b_{2} $A=\frac{1}{2}(7+2.4)(2)$
$A=\frac{1}{2}(9.4)(2) \quad * *$ To calculate this, you can turn the $\frac{1}{2}$ into a 0.5 and multiply (i.e. $0.5 \cdot$ $9.4 \cdot 2$) or you can multiply 9.4 and 2 and then divide by 2 (i.e. $\left(\frac{9.4 \cdot 2}{2}\right)$).
Both methods will give you the same answer.
$A=9.4$
The area is $\mathbf{9 . 4} \mathbf{c m}^{2}$.

Example 7: Finding height of a trapezoid

$$
\text { Area }=20 \mathrm{~km}^{2}
$$

$$
h=\underline{?}
$$

$A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$
$A=20, b_{1}=2.8, b_{2}=7.2$
$20=\frac{1}{2}(2.8+7.2) h$
$20=\frac{1}{2}(10) h$
$20=5 h$
$\frac{20}{5}=\frac{5 h}{5}$
$4=h$
The height of the trapezoid is $\mathbf{4} \mathbf{~ k m}$.

Example 8: Finding a missing base of a trapezoid

$$
A=126 \text { in }^{2} \quad b=\underline{?}
$$

$A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$
$A=126, b_{1}=16, h=9$
$126=\frac{1}{2}(16+b)(9)$
$126=\frac{1}{2}(9)(16+b) \quad * *$ We can switch the order of the multiplication
$126=4.5(16+b) \quad * *$ Calculate $\frac{1}{2} \cdot 9$.
$\frac{126}{4.5}=\frac{4.5(16+b)}{4.5}$
$28=16+b$
$12=b$
The base is $\mathbf{1 2} \mathbf{~ i n . ~}$

Kite Area Conjecture - The area of a kite is given by the formula $A=\frac{1}{2} d_{1} d_{2}$, where A is the area, d_{1} and d_{2} are the lengths of the diagonals.

Example 9: Finding area of a kite

$A=\frac{1}{2} d_{1} d_{2}$
$d_{1}=10, d_{2}=4$
$A=\frac{1}{2}(10)(4)$
$A=20$
The area is $\mathbf{2 0} \mathbf{~ c m}^{2}$.

Example 10: Finding a missing diagonal of a kite

$A B D E$ is a kite. $A=120 \mathrm{in}^{2} \quad A D=60$ in
$B E=$ \qquad ?
$A=\frac{1}{2} d_{1} d_{2}$
$A=120, d_{1}=60$
$120=\frac{1}{2}(60)\left(d_{2}\right)$
$120=30\left(d_{2}\right)$
$\frac{120}{30}=\frac{30 d_{2}}{30}$
$40=d_{2}$
$B E=40$ in.

