Writing Equations in Slope-Intercept Form Given Two Points

**Remember that slope-intercept form is $y=m x+b$ where m is slope and b is the y -intercept.

Example 1: Write an Equation Given Two Points

Write an equation of a line that passes through $(-3,-1)$ and $(6,-4)$

The first thing we have to do when given two points is calculate slope.

$\frac{\Delta y}{\Delta x}=\frac{-3}{9}=-\frac{1}{3}$
The slope (m) is $-\frac{1}{3}$.
$y=m x+b$
We can replace m with the slope we just calculated.
$y=-\frac{1}{3} x+b$
We can choose to use either of the two points: **You do not need to plug both in. You pick one and use that one. I'm using both to show that it doesn't matter which you choose.

If we use $(-3,-1)$:
If we use $(6,-4)$:
Replace x with -3 .
Replace x with 6 .
Replace y with -1 .
$-1=-\frac{1}{3}(-3)+b$
Replace y with -4.
$-4=-\frac{1}{3}(6)+b$
Multiply the $-\frac{1}{3} \cdot-3$.
Multiply the $-\frac{1}{3} \cdot 6$.
$-1=1+b$
$-4=-2+b$

Solve for b :
$-1=1+b$
$-1-1$
$-2=b$

Solve for b :

$$
-4=-2+b
$$

$$
+2+2
$$

$$
-2=b
$$

Notice that we get the same y-intercept regardless of which point we choose to plug in for x and y .

Our final answer is when we write the equation of the line with both the slope and y-intercept replaced.
$y=-\frac{1}{3} x-2 \quad * *$ This is our solution

Example 2: Write an Equation Given Two Points

Write an equation of a line that passes through $(5,1)$ and $(8,-2)$

The first thing we have to do when given two points is calculate slope.
$+3\left(\begin{array}{|c|c|}\hline \boldsymbol{x} & \boldsymbol{y} \\ \hline 5 & 1 \\ \hline 8 & -2 \\ \hline\end{array}\right)-3$
$\frac{\Delta y}{\Delta x}=\frac{-3}{3}=-1$
The slope (m) is -1 .
$y=m x+b$
We can replace m with the slope we just calculated.
$y=-1 x+b$
We can choose to use either of the two points: **You do not need to plug both in. You pick one and use that one. I'm using both to show that it doesn't matter which you choose.

If we use $(5,1)$:
If we use ($8,-2$):
Replace x with 5 .
Replace x with 8 .
Replace y with 1 .
$1=-1(5)+b$
$-2=-1(8)+b$
Multiply the $-1 \cdot 5$.
$1=-5+b$
Multiply the $-1 \cdot 8$.
$-2=-8+b$

Solve for b :
$\begin{array}{ll}1=-5+b & -2=-8+b \\ +5+5 & +8+8 \\ 6=b & 6=b\end{array}$
Notice that we get the same y-intercept regardless of which point we choose to plug in for x and y .

Our final answer is when we write the equation of the line with both the slope and y-intercept replaced.
$y=-1 x+6 \quad * * \mathrm{~A}-1 x$ is the same as $-x$
$y=-x+6 \quad * *$ This is our solution

Example 3: Write an Equation Given Two Points

Write an equation of a line that passes through $(6,0)$ and $(0,4)$

The first thing we have to do when given two points is calculate slope.

$\frac{\Delta y}{\Delta x}=\frac{4}{-6}=-\frac{2}{3}$
The slope (m) is $-\frac{2}{3}$.
$y=m x+b$
We can replace m with the slope we just calculated.
$y=-\frac{2}{3} x+b$
We can choose to use either of the two points: **You do not need to plug both in. You pick one and use that one. I'm using both to show that it doesn't matter which you choose.

If we use $(6,0)$:
Replace x with 6 .
If we use $(0,4)$:

Replace y with 0 .
Replace x with 0 .
Replace y with 4.
$0=-\frac{2}{3}(6)+b$
Multiply the $-\frac{2}{3} \cdot 6$.
$0=-4+b$
Solve for b :
$0=-4+b$
$+4+4$
$4=b$
Notice that we get the same y -intercept regardless of which point we choose to plug in for x and y .

Our final answer is when we write the equation of the line with both the slope and y-intercept replaced.
$y=-\frac{2}{3} x+4 \quad * *$ This is our solution

Example 4: Write an Equation Given Two Points

Write an equation of a line that passes through $(5,2)$ and $(-7,-4)$

The first thing we have to do when given two points is calculate slope.
$-12\left(\begin{array}{|c|c|}\hline \boldsymbol{x} & \boldsymbol{y} \\ \hline 5 & 2 \\ \hline-7 & -4 \\ \hline\end{array}\right)-6$
$\frac{\Delta y}{\Delta x}=\frac{-6}{-12}=\frac{1}{2}$
The slope (m) is $\frac{1}{2}$.
$y=m x+b$
We can replace m with the slope we just calculated.
$y=\frac{1}{2} x+b$

We can choose to use either of the two points: **You do not need to plug both in. You pick one and use that one. I'm using both to show that it doesn't matter which you choose.

If we use $(5,2)$:
Replace x with 5 .
Replace y with 2.
$2=\frac{1}{2}(5)+b$
Multiply the $\frac{1}{2} \cdot 5$.
$2=2 \frac{1}{2}+b$
Solve for b :
$2=2 \frac{1}{2}+b$
$-2 \frac{1}{2}-2 \frac{1}{2}$
$-\frac{1}{2}=b$

If we use $(-7,-4)$:
Replace x with -7 .
Replace y with -4.
$-4=\frac{1}{2}(-7)+b$
Multiply the $\frac{1}{2} \cdot-7$.
$-4=-3 \frac{1}{2}+b$
Solve for b :
$-4=-3 \frac{1}{2}+b$
$+3 \frac{1}{2}+3 \frac{1}{2}$
$-\frac{1}{2}=b$

Notice that we get the same y -intercept regardless of which point we choose to plug in for x and y .

Our final answer is when we write the equation of the line with both the slope and y-intercept replaced.
$y=\frac{1}{2} x-\frac{1}{2} \quad * *$ This is our solution

Example 5: Write an Equation Given Two Points

Write an equation of a line that passes through $(2,-3)$ and $(8,-3)$

The first thing we have to do when given two points is calculate slope.
$+6\left(\begin{array}{|c|c|}\hline \boldsymbol{x} & \boldsymbol{y} \\ \hline 2 & -3 \\ \hline 8 & -3 \\ \hline\end{array}\right)+0$
$\frac{\Delta y}{\Delta x}=\frac{0}{6}=0$
The slope (m) is 0 .

Slopes of zero define horizontal lines whose equations are of the form $y=\#$
In both of the points $(2,-3)$ and $(8,-3),-3$ is the y-value. So, our equation must be:
$y=-3$

Example 6: Write an Equation Given Two Points

Write an equation of a line that passes through $(6,-1)$ and $(6,2)$

The first thing we have to do when given two points is calculate slope.

$\frac{\Delta y}{\Delta x}=\frac{3}{0}=$ undefined
The slope (m) is undefined.
Undefined slopes are vertical lines whose equations are $x=\#$.
In both of the points $(6,-1)$ and $(6,2), 6$ is the x-value. So, our equation must be:
$x=6$

