Writing Equations in Slope-Intercept Form Given Two Points

**Remember that slope-intercept form is y = mx + b where m is slope and b is the y-intercept. Example 1: Write an Equation Given Two Points

Write an equation of a line that passes through (-3, -1) and (6, -4)

The first thing we have to do when given two points is calculate slope.

 $\frac{\Delta y}{\Delta x} = \frac{-3}{9} = -\frac{1}{3}$

The slope (m) is $-\frac{1}{3}$.

$$y = mx + b$$

We can replace m with the slope we just calculated.

$$y = -\frac{1}{3}x + b$$

We can choose to use either of the two points: *******You do not need to plug both in. You pick one* and use that one. I'm using both to show that it doesn't matter which you choose.

If we use $(-3, -1)$:	If we use $(6, -4)$:
Replace x with -3.	Replace x with 6.
Replace y with -1.	Replace y with -4.
$-1 = -\frac{1}{3}(-3) + b$	$-4 = -\frac{1}{3}(6) + b$
Multiply the $-\frac{1}{3} \cdot -3$.	Multiply the $-\frac{1}{3} \cdot 6$.
-1 = 1 + b	-4 = -2 + b
Solve for b:	Solve for b:
-1 = 1 + b	-4 = -2 + b
-1 -1	+2 +2
-2 = b	-2 = b

Notice that we get the same y-intercept regardless of which point we choose to plug in for x and y.

Our final answer is when we write the equation of the line with both the slope and y-intercept replaced.

$$y = -\frac{1}{3}x - 2$$
 **This is our solution

Example 2: Write an Equation Given Two Points

Write an equation of a line that passes through (5, 1) and (8, -2)

The first thing we have to do when given two points is calculate slope.

$$+3 \begin{pmatrix} x & y \\ 5 & 1 \\ 8 & -2 \end{pmatrix} -3$$

 $\frac{\Delta y}{\Delta x} = \frac{-3}{3} = -1$

The slope (m) is -1.

y = mx + b

We can replace m with the slope we just calculated.

y = -1x + b

We can choose to use either of the two points: *******You do not need to plug both in. You pick one* and use that one. I'm using both to show that it doesn't matter which you choose.

If we use $(8, -2)$:
Replace x with 8.
Replace y with -2.
-2 = -1(8) + b
Multiply the $-1 \cdot 8$.
-2 = -8 + b

Solve for b:	Solve for b:
1 = -5 + b	-2 = -8 + b
+5 + 5	+8 +8
6 = b	6 = b

Notice that we get the same y-intercept regardless of which point we choose to plug in for x and y.

Our final answer is when we write the equation of the line with both the slope and y-intercept replaced.

y = -1x + 6	** A $-1x$ is the same as $-x$
y = -x + 6	* *This is our solution

Example 3: Write an Equation Given Two Points

Write an equation of a line that passes through (6, 0) and (0, 4)

The first thing we have to do when given two points is calculate slope.

$$\frac{\Delta y}{\Delta x} = \frac{4}{-6} = -\frac{2}{3}$$

The slope (m) is $-\frac{2}{3}$.

$$y = mx + b$$

We can replace m with the slope we just calculated.

$$y = -\frac{2}{3}x + b$$

We can choose to use either of the two points: *******You do not need to plug both in. You pick one* and use that one. I'm using both to show that it doesn't matter which you choose.

If we use (6,0):	If we use (0, 4):
Replace x with 6.	Replace x with 0.
Replace y with 0.	Replace y with 4.

$0 = -\frac{2}{3}(6) + b$	$4 = -\frac{2}{3}(0) + b$
Multiply the $-\frac{2}{3} \cdot 6$.	Multiply the $-\frac{2}{3} \cdot 0$.
0 = -4 + b	4 = 0 + b
Solve for b:	Solve for b:
0 = -4 + b	4 = 0 + b
+4 +4	
4 = b	4 = b

Notice that we get the same y-intercept regardless of which point we choose to plug in for x and y.

Our final answer is when we write the equation of the line with both the slope and y-intercept replaced.

 $y = -\frac{2}{3}x + 4$ **This is our solution

Example 4: Write an Equation Given Two Points

Write an equation of a line that passes through (5, 2) and (-7, -4)

The first thing we have to do when given two points is calculate slope.

$$-12\left(\begin{array}{c|c} x & y \\ 5 & 2 \\ \hline -7 & -4 \end{array}\right) -6$$

 $\frac{\Delta y}{\Delta x} = \frac{-6}{-12} = \frac{1}{2}$ The slope (m) is $\frac{1}{2}$. y = mx + b

We can replace m with the slope we just calculated.

$$y = \frac{1}{2}x + b$$

We can choose to use either of the two points: *******You do not need to plug both in. You pick one* and use that one. I'm using both to show that it doesn't matter which you choose.

If we use (5, 2):	If we use $(-7, -4)$:
Replace x with 5.	Replace x with -7.
Replace y with 2.	Replace y with -4.
$2 = \frac{1}{2}(5) + b$	$-4 = \frac{1}{2}(-7) + b$
Multiply the $\frac{1}{2} \cdot 5$.	Multiply the $\frac{1}{2} \cdot -7$.
$2 = 2\frac{1}{2} + b$	$-4 = -3\frac{1}{2} + b$
Solve for b:	Solve for b:
$2 = 2\frac{1}{2} + b$	$-4 = -3\frac{1}{2} + b$
$-2\frac{1}{2} - 2\frac{1}{2}$	$+3\frac{1}{2} + 3\frac{1}{2}$
$-\frac{1}{2} = b$	$-\frac{1}{2}=b$

Notice that we get the same y-intercept regardless of which point we choose to plug in for x and y.

Our final answer is when we write the equation of the line with both the slope and y-intercept replaced.

 $y = \frac{1}{2}x - \frac{1}{2}$ **This is our solution

Example 5: Write an Equation Given Two Points

Write an equation of a line that passes through (2, -3) and (8, -3)

The first thing we have to do when given two points is calculate slope.

$$+6 \begin{pmatrix} x & y \\ 2 & -3 \\ 8 & -3 \end{pmatrix} +0$$

$$\frac{\Delta y}{\Delta x} = \frac{0}{6} = 0$$

The slope (m) is 0.

Slopes of zero define horizontal lines whose equations are of the form y = #In both of the points (2, -3) and (8, -3), -3 is the y-value. So, our equation must be: y = -3

Example 6: Write an Equation Given Two Points

Write an equation of a line that passes through (6, -1) and (6, 2)

The first thing we have to do when given two points is calculate slope.

$$+0 \begin{pmatrix} x & y \\ 6 & -1 \\ 6 & 2 \end{pmatrix} +3$$

$$\frac{\Delta y}{\Delta x} = \frac{3}{0} = undefined$$

The slope (m) is undefined.

Undefined slopes are vertical lines whose equations are x = #.

In both of the points (6, -1) and (6, 2), 6 is the x-value. So, our equation must be:

x = 6