Writing Equations in Slope-Intercept Form Given Slope and a Point

**Remember that slope-intercept form is $y=m x+b$ where m is slope and b is the y -intercept.

Example 1: Write an Equation Given Slope and One Point
Write an equation of a line that passes through $(1,5)$ with slope 2.
$y=m x+b$
We can replace m with 2 since we know the slope.
$y=2 x+b$
In the point $(1,5), 1$ is the x-value and 5 is the y-value. So, we can replace x with 1 and y with 5.
$5=2(1)+b$
Now we should multiply the $2 \cdot 1$.
$5=2+b$
Solve for b :
$5=2+b$
$-2-2$
$3=b$
Our final answer is when we write the equation of the line with both the slope and y-intercept replaced.
$y=2 x+3 \quad * *$ The slope comes from the original problem. The y-intercept comes from our solving for b . This is our solution.

Example 2: Write an Equation Given Slope and One Point
$(4,-2), m=2$
$y=m x+b$
We can replace m with 2 since we know the slope.
$y=2 x+b$

In the point $(4,-2), 4$ is the x-value and -2 is the y-value. So, we can replace x with 4 and y with -2 .
$-2=2(4)+b$
Now we should multiply the $2 \cdot 4$.
$-2=8+b$
Solve for b :
$-2=8+b$
$-8 \quad-8$
$-10=b$
Our final answer is when we write the equation of the line with both the slope and y-intercept replaced.
$y=2 x-10 \quad * *$ The slope comes from the original problem. The y-intercept comes from our solving for b . This is our solution.

Example 3: Write an Equation Given Slope and One Point
$(3,7), m=-3$
$y=m x+b$
We can replace m with -3 since we know the slope.
$y=-3 x+b$
In the point $(3,7), 3$ is the x-value and 7 is the y-value. So, we can replace x with 3 and y with 7.
$7=-3(3)+b$
Now we should multiply the $-3 \cdot 3$.
$7=-9+b$
Solve for b :
$7=-9+b$
$+9+9$
$16=b$
Our final answer is when we write the equation of the line with both the slope and y-intercept replaced.
$y=-3 x+16 \quad * *$ The slope comes from the original problem. The y-intercept comes from our solving for b . This is our solution.

Example 4: Write an Equation Given Slope and One Point
$(-3,5), m=-1$
$y=m x+b$
We can replace m with -1 since we know the slope.
$y=-1 x+b$
In the point $(-3,5),-3$ is the x-value and 5 is the y-value. So, we can replace x with -3 and y with 5 .
$5=-1(-3)+b$
Now we should multiply the $-1 \cdot-3$.
$5=3+b$
Solve for b :
$5=3+b$
$-3-3$
$2=b$
Our final answer is when we write the equation of the line with both the slope and y-intercept replaced.
$y=-x+2 \quad * *$ The slope comes from the original problem. The y-intercept comes from our solving for b . This is our solution.

Example 5: Write an Equation Given Slope and One Point
$(5,3), m=\frac{1}{2}$
$y=m x+b$
We can replace m with $1 / 2$ since we know the slope.
$y=\frac{1}{2} x+b$
In the point $(5,3), 5$ is the x-value and 3 is the y-value. So, we can replace x with 5 and y with 3.
$5=\frac{1}{2}(3)+b$
Now we should multiply the $\frac{1}{2} \cdot 3$.
$5=1 \frac{1}{2}+b$
Solve for b :
$5=1 \frac{1}{2}+b$
$-1 \frac{1}{2}-1 \frac{1}{2}$
$3 \frac{1}{2}=b$
Our final answer is when we write the equation of the line with both the slope and y-intercept replaced.
$y=\frac{1}{2} x+3 \frac{1}{2} \quad * *$ The slope comes from the original problem. The y-intercept comes from our solving for b . This is our solution.

Example 6: Write an Equation Given Slope and One Point
$(-3,-1), m=-\frac{2}{3}$
$y=m x+b$
We can replace m with $-2 / 3$ since we know the slope.
$y=-\frac{2}{3} x+b$
In the point $(-3,-1),-3$ is the x-value and -1 is the y-value. So, we can replace x with -3 and y with -1 .
$-1=-\frac{2}{3}(-3)+b$
Now we should multiply the $-\frac{2}{3} \cdot-3$.
$-1=2+b$

Solve for b :
$-1=2+b$
$-2 \quad-2$
$-3=b$
Our final answer is when we write the equation of the line with both the slope and y-intercept replaced.
$y=-\frac{2}{3} x-3 \quad * *$ The slope comes from the original problem. The y-intercept comes from our solving for b . This is our solution.

Example 7: Write an Equation Given Slope and One Point
$(4,2), m=0$
Slopes of zero define horizontal lines whose equations are of the form $y=\#$
In the point $(4,2), 2$ is the y-value. So, our equation must be:
$y=2$

Example 8: Write an Equation Given Slope and One Point
$(4,2), m=$ undefined
Undefined slopes are vertical lines whose equations are $x=\#$.
In the point $(4,2), 4$ is the x-value. So, our equation must be:
$x=4$

