Writing Equations of Lines Given a Graph

Slope-Intercept Form:

Example 1:
Write the slope-intercept form of the equation of each line.

We need to start by finding the slope of the line. This one doesn't have points placed on the line, so I just need to find two places where the line crosses the gridlines.

From here, we should calculate vertical and horizontal changes.

The slope is $\frac{\Delta y}{\Delta x}=\frac{6}{1}=6$.

The y-intercept is the point where the line crosses the y-axis. If we look at our graph, we can see that the line crosses the y-axis at 4 .
$y=m x+b$
$y=6 x+4$

Example 2:

Write the slope-intercept form of the equation of each line.

We need to start by finding the slope of the line. This one doesn't have points placed on the line, so I just need to find two places where the line crosses the gridlines.

From here, we should calculate vertical and horizontal changes.

The slope is $\frac{\Delta y}{\Delta x}=\frac{1}{1}=1$.

The y-intercept is the point where the line crosses the y-axis. If we look at our graph, we can see that the line crosses the y-axis at 3 .
$y=m x+b$
$y=1 x+3 \quad * *$ Remember that you don't need to write the 1 in front of the x.
$y=x+3$

Example 3:

Write the slope-intercept form of the equation of each line.

We need to start by finding the slope of the line. This one doesn't have points placed on the line, so I just need to find two places where the line crosses the gridlines.

From here, we should calculate vertical and horizontal changes.

The slope is $\frac{\Delta y}{\Delta x}=\frac{-1}{4}=-\frac{1}{4}$.

The y-intercept is the point where the line crosses the y-axis. If we look at our graph, we can see that the line crosses the y-axis at -1 .
$y=m x+b$
$y=-\frac{1}{4} x-1$

Example 4:

Write the slope-intercept form of the equation of each line.

We need to start by finding the slope of the line. This one doesn't have points placed on the line, so I just need to find two places where the line crosses the gridlines.

From here, we should calculate vertical and horizontal changes.

The slope is $\frac{\Delta y}{\Delta x}=\frac{-1}{4}=-\frac{1}{4}$.

The y-intercept is the point where the line crosses the y-axis. If we look at our graph, we can see that the line crosses the y-axis at -4 .
$y=m x+b$
$y=-\frac{1}{4} x-4$

Example 5:

Write the slope-intercept form of the equation of each line.

This is a horizontal line. All horizontal lines have equations $y=\#$. Since this line is at 2 , the equation of our line is $\boldsymbol{y}=\mathbf{2}$.

Example 6:

Write the slope-intercept form of the equation of each line.

We need to start by finding the slope of the line. This one doesn't have points placed on the line, so I just need to find two places where the line crosses the gridlines.

From here, we should calculate vertical and horizontal changes.

The slope is $\frac{\Delta y}{\Delta x}=\frac{-6}{1}=-6$.

The y-intercept is the point where the line crosses the y-axis. If we look at our graph, we can see that the line crosses the y-axis at -1 .
$y=m x+b$
$y=-6 x-1$

Example 7:

Write the slope-intercept form of the equation of each line.

We need to start by finding the slope of the line. This one doesn't have points placed on the line, so I just need to find two places where the line crosses the gridlines.

The y-intercept is the point where the line crosses the y-axis. If we look at our graph, we can see that the line crosses the y-axis at -1 .
$y=m x+b$
$y=2 x-1$

Example 8:

Write the slope-intercept form of the equation of each line.

We need to start by finding the slope of the line. This one doesn't have points placed on the line, so I just need to find two places where the line crosses the gridlines.

From here, we should calculate vertical and horizontal changes.

The slope is $\frac{\Delta y}{\Delta x}=\frac{-1}{1}=-1$.

The y-intercept is the point where the line crosses the y-axis. If we look at our graph, we can see that the line crosses the y-axis at 0 .
$y=m x+b$
$y=-1 x+0 \quad * *$ Remember that you do not need to write the 1 in front of the x or the +0
$y=-x$

Example 9:

Write the slope-intercept form of the equation of each line.

We need to start by finding the slope of the line. This one doesn't have points placed on the line, so I just need to find two places where the line crosses the gridlines.

From here, we should calculate vertical and horizontal changes.

The slope is $\frac{\Delta y}{\Delta x}=\frac{5}{1}=5$.

The y-intercept is the point where the line crosses the y-axis. If we look at our graph, we can see that the line crosses the y-axis at 0 .
$y=m x+b$
$y=5 x+0$
**Remember that you do not need to write the +0
$y=5 x$

Example 10:

Write the slope-intercept form of the equation of each line.

This is a vertical line. All horizontal lines have equations $x=$ \#. Since this line is at 1 , the equation of our line is $\boldsymbol{x}=\mathbf{1}$.

Example 11:
Write the slope-intercept form of the equation of each line.

We need to start by finding the slope of the line. This one doesn't have points placed on the line, so I just need to find two places where the line crosses the gridlines.

From here, we should calculate vertical and horizontal changes.

The slope is $\frac{\Delta y}{\Delta x}=\frac{-7}{1}=-7$.

The y-intercept is the point where the line crosses the y-axis. If we look at our graph, we can see that the line crosses the y-axis at 3 .

$$
\begin{aligned}
& y=m x+b \\
& \boldsymbol{y}=-\mathbf{7} \boldsymbol{x}+\mathbf{3}
\end{aligned}
$$

Example 12:

Write the slope-intercept form of the equation of each line.

We need to start by finding the slope of the line. This one doesn't have points placed on the line, so I just need to find two places where the line crosses the gridlines.

The y-intercept is the point where the line crosses the y-axis. If we look at our graph, we can see that the line crosses the y-axis at -1 .
$y=m x+b$
$y=-\frac{1}{2} x-1$

Example 13:

Write the slope-intercept form of each line given the slope and y-intercept.
Slope $=2, y$-intercept $=0$
$y=m x+b$
$y=2 x+0$
$y=2 x$

Example 14:

Write the slope-intercept form of each line given the slope and y-intercept.
Slope $=-1, y$-intercept $=1$
$y=m x+b$
$y=-1 x \mp 1$
$y=-x+1$

Example 15:
Write the slope-intercept form of each line given the slope and y-intercept.
Slope $=0, y$-intercept $=3$
$y=m x+b$
$y=0 x+3$
$y=3$

Example 16:
Write the slope-intercept form of each line given the slope and y-intercept.
Slope $=$ undefined, x-intercept $=-3$

Undefined slopes define vertical lines, so we know this equation does not follow $y=m x+b$. We know vertical lines are $x=\#$. Since they tell us that this line crosses the x-axis at -3 , we know that the equation is:
$x=-3$

