Lesson 6.3 - Arcs and Angles

Inscribed Angle - An inscribed angle has its vertex on the circle and its sides are chords.

$\angle A B C, \angle B C D$, and $\angle C D E$ are
inscribed angles.

Inscribed Angle Conjecture - The measure of an inscribed angle in a circle is one half the measure of the intercepted arc.

$$
m \angle C A R=\frac{1}{2} m \overparen{C R}
$$

Inscribed Angles Intercepting Arcs Conjecture - Inscribed angles that intercept the same arc are congruent.

Angles Inscribed in a Semicircle Conjecture - Angles inscribed in a semicircle are right angles.

Cyclic Quadrilateral Conjecture - The opposite angles of a cyclic quadrilateral are supplementary.

Secant - A secant is a line that intersects a circle in two points.

Parallel Lines Intercepted Arcs Conjecture - Parallel lines intercept congruent arcs on a circle.

$$
\widehat{A D} \cong \widehat{B C}
$$

Example 1: Find the measure of each unknown.
$m \overparen{X M}=80^{\circ}$
$m \angle X N M=$ \qquad
$m \overparen{X N}=$ \qquad
$m \overparen{M N}=$ \qquad

$\angle X N M$ is the inscribed angle that intercepts $\operatorname{arc} \overparen{X M}$. Inscribed angles are half the measure of the arcs they intercept.
$m \angle X N M=40^{\circ}$
$\overparen{X N}$ is a semicircle (regardless of which way we go from X to N).
$m \overparen{X N}=180^{\circ}$
$\overparen{X M}+\overparen{M N}=\overparen{X N}$. We know the measure of $\overparen{X M}$ and $\overparen{X N} .80+\overparen{M N}=180$.
$\boldsymbol{m} \overparen{M N}=100^{\circ}$

Example 2: Find the measure of each unknown.
$\overleftrightarrow{A B}$ is a tangent.
$x=$ \qquad
$y=$ \qquad
$z=$ \qquad

The measure of the central angle is equal to the measure of the arc it intercepts.
$x=120^{\circ}$
The inscribed angle to the 120° arc is half the measure of the arc. y and the two 60° angles must add to 180°.
$y=60^{\circ}$

Because the three angles are congruent, all three arcs will be congruent.
$z=120^{\circ}$

Example 3: Find the measure of each unknown.
$a=$ \qquad ,$b=$ \qquad , $c=$ \qquad

a is the angle inscribed in a semicircle and must be a right angle.
$a=90^{\circ}$
c is the angle inscribed to the 70° arc and must be half its measure.
$c=35^{\circ}$
a, b, and c form the three angles of a triangle and must add to $180^{\circ} .180-(90+35)=55$.
$b=55^{\circ}$

Example 4: Find the measure of each unknown.
$a=$ \qquad , $b=$ \qquad , $c=$ \qquad

a is the angle inscribed to the 100° arc and must be half its measure.
$a=50^{\circ}$
c is the angle inscribed to the 140° arc and must be half its measure.
$c=70^{\circ}$
a, b, and c form the three angles of a triangle and must add to $180^{\circ} .180-(50+70)=60$.
$b=60^{\circ}$

Example 5: Find the measure of each unknown.
$\overrightarrow{A B}$ and $\overrightarrow{A C}$ are tangents.
$x=$ \qquad

We know that both of the angles that are formed by a radius to a tangent line are right angles.
The figure formed is a quadrilateral and must add to 360°.
$360-(90+90+40)=140$
$x=140^{\circ}$

Example 6: Find the measure of each unknown.
$\overline{A D}$ is a tangent. $\overline{A C}$ is a diameter.
$m \angle A=$ \qquad
$m \overparen{A B}=$ \qquad
$m \angle C=$ \qquad
$m \overparen{C B}=$ \qquad

$\angle A$ is formed by a radius to a tangent and must be a right angle.
$m \angle A=90^{\circ}$
We can find the measure of $\angle C$ by solving the triangle $A D C .180-(90+54)=36$.
$m \angle C=34^{\circ}$
$\angle C$ is the inscribed angle to $\overparen{A B}$, so the measure of $\overparen{A B}$ must be twice the measure of $\angle C$.
$m \overparen{A B}=72^{\circ}$
$\overparen{A B}$ and $\overparen{C B}$ form a semicircle and must add to 180°.
$m \overparen{C B}=108^{\circ}$

Example 7: Find the measure of each unknown.
$m \overparen{A D}=$ \qquad
$m \angle D=$ \qquad
$m \overparen{A B}=$ \qquad
$m \overparen{D A B}=$ \qquad

$\angle B$ is the inscribed angle to $\overparen{A D}$, so the measure of $\overparen{A D}$ must be twice the measure of $\angle B$.
$m \overparen{A D}=140^{\circ}$
We can find the measure of $\angle D$ by solving the triangle. $180-(80+70)=30$.
$m \angle D=30^{\circ}$
$\angle D$ is the inscribed angle to $\overparen{A B}$, so the measure of $\overparen{A B}$ must be twice the measure of $\angle D$.
$m \overparen{A B}=60^{\circ}$
$\overparen{D A B}$ is formed by $\overparen{A D}$ and $\overparen{A B}$ added together.
$m \overparen{D A B}=200^{\circ}$

Example 8: Find the measure of each unknown.
$p=$ \qquad
$q=$ \qquad
$r=$ \qquad
$s=$ \qquad

The 29° angle is the inscribed angle to r. So, r must be twice the measure of the inscribed angle.
$r=58^{\circ}$
Vertical angles are congruent and we can solve the triangle.
The 64° angle is the inscribed angle to p.
$p=128^{\circ}$

We know that all arcs of a circle should add to 360° and we know that s and q should be congruent since the chords that form them are congruent. $\frac{360-(58+12)}{2}=87$.
$s=87^{\circ}$
$q=87^{\circ}$

Example 9: Find the lettered angle and arc measures. $\overrightarrow{A T}$ and $\overrightarrow{A Z}$ are tangents.

a is a corresponding angle to the 50° angle.
$a=50^{\circ}$
g is the arc formed by the central angle a, so it must be congruent to a.
$\boldsymbol{g}=\mathbf{5 0}^{\circ}$
d is a vertical angle to a.
$\boldsymbol{d}=\mathbf{5 0}^{\circ}$
n is the arc formed by the central angle d, so it must be congruent to d.
$\boldsymbol{n}=50^{\circ}$
h and n are arcs intercepted by congruent lines and must be congruent.
$h=50^{\circ}$
h is the arc formed by the central angle b, so b must be congruent to h.
$b=50^{\circ}$
f is formed by a radius to a tangent and must be a right angle.
$f=90^{\circ}$
j is formed by a radius to a tangent and must be a right angle.
$\boldsymbol{j}=\mathbf{9 0}^{\circ}$
e forms a linear pair with a.
$e=130^{\circ}$
d, b, and c form a line and must add to 180°.
$c=\mathbf{8 0}^{\circ}$
m is the arc formed by the central angle c, so it must be congruent to c.
$m=80^{\circ}$
k, j, and the unmarked angle between them form a line and must add to 180°. The unmarked angle is the other base angle of an isosceles triangle (because the radii of the circle must be congruent.) So, the unmarked angle is $50^{\circ} .180-(50+90)=40$.
$\boldsymbol{k}=40^{\circ}$

