Lesson 6.3 – Arcs and Angles

Inscribed Angle - An inscribed angle has its vertex on the circle and its sides are chords.

 $\angle ABC$, $\angle BCD$, and $\angle CDE$ are inscribed angles.

Inscribed Angle Conjecture - The measure of an inscribed angle in a circle is one half the measure of the intercepted arc.

Inscribed Angles Intercepting Arcs Conjecture - Inscribed angles that intercept the same arc are congruent.

Angles Inscribed in a Semicircle Conjecture - Angles inscribed in a semicircle are right angles.

Cyclic Quadrilateral Conjecture - The opposite angles of a cyclic quadrilateral are supplementary.

Example 1: Find the measure of each unknown.

 $\angle XNM$ is the inscribed angle that intercepts arc \widehat{XM} . Inscribed angles are half the measure of the arcs they intercept.

$m \angle XNM = 40^{\circ}$

 \widehat{XN} is a semicircle (regardless of which way we go from X to N).

 $m \widehat{XN} = 180^{\circ}$ $\widehat{XM} + \widehat{MN} = \widehat{XN}$. We know the measure of \widehat{XM} and $\widehat{XN} \cdot 80 + \widehat{MN} = 180$. $m \widehat{MN} = 100^{\circ}$

Example 2: Find the measure of each unknown.

The measure of the central angle is equal to the measure of the arc it intercepts.

 $x = 120^{\circ}$

The inscribed angle to the 120° arc is half the measure of the arc.

y and the two 60° angles must add to 180° .

 $y = 60^{\circ}$

Because the three angles are congruent, all three arcs will be congruent.

 $z = 120^{\circ}$

Example 3: Find the measure of each unknown.

a is the angle inscribed in a semicircle and must be a right angle.

a = 90°

c is the angle inscribed to the 70° arc and must be half its measure.

 $c = 35^{\circ}$

a, *b*, and *c* form the three angles of a triangle and must add to 180° . 180 - (90 + 35) = 55.

 $b = 55^{\circ}$

a is the angle inscribed to the 100° arc and must be half its measure.

c is the angle inscribed to the 140° arc and must be half its measure.

$$c = 70^{\circ}$$

a, b, and c form the three angles of a triangle and must add to 180° . 180 - (50 + 70) = 60.

$$b = 60^{\circ}$$

Example 5: Find the measure of each unknown.

We know that both of the angles that are formed by a radius to a tangent line are right angles.

The figure formed is a quadrilateral and must add to 360°.

360 - (90 + 90 + 40) = 140

 $x = 140^{\circ}$

Example 6: Find the measure of each unknown.

 \overline{AD} is a tangent. \overline{AC} is a diameter. $m \angle A = \underline{\qquad}$ $m \widehat{AB} = \underline{\qquad}$ $m \angle C = \underline{\qquad}$ $m \widehat{CB} = \underline{\qquad}$

 $\angle A$ is formed by a radius to a tangent and must be a right angle.

$m \angle A = 90^{\circ}$

We can find the measure of $\angle C$ by solving the triangle ADC. 180 - (90 + 54) = 36.

$$m \angle C = 34^{\circ}$$

 $\angle C$ is the inscribed angle to \widehat{AB} , so the measure of \widehat{AB} must be twice the measure of $\angle C$.

$m \widehat{AB} = 72^{\circ}$

 \widehat{AB} and \widehat{CB} form a semicircle and must add to 180°.

 $m \widehat{CB} = 108^{\circ}$

Example 7: Find the measure of each unknown.

 $\angle B$ is the inscribed angle to \widehat{AD} , so the measure of \widehat{AD} must be twice the measure of $\angle B$.

$$m \widehat{AD} = 140^{\circ}$$

We can find the measure of $\angle D$ by solving the triangle. 180 - (80 + 70) = 30.

$$m \angle D = 30^{\circ}$$

 $\angle D$ is the inscribed angle to \widehat{AB} , so the measure of \widehat{AB} must be twice the measure of $\angle D$.

 $m \widehat{AB} = 60^{\circ}$

 \widehat{DAB} is formed by \widehat{AD} and \widehat{AB} added together.

 $m \widehat{DAB} = 200^{\circ}$

Example 8	: Find the measure	e of each unknown.

s =____

The 29° angle is the inscribed angle to r. So, r must be twice the measure of the inscribed angle.

$r = 58^{\circ}$

Vertical angles are congruent and we can solve the triangle.

The 64° angle is the inscribed angle to p.

 $p = 128^{\circ}$

We know that all arcs of a circle should add to 360° and we know that *s* and *q* should be congruent since the chords that form them are congruent. $\frac{360-(58+12)}{2} = 87.$

 $s = 87^{\circ}$

 $q = 87^{\circ}$

a is a corresponding angle to the 50° angle.

a = 50°

g is the arc formed by the central angle a, so it must be congruent to a.

$g = 50^{\circ}$

d is a vertical angle to *a*.

$$d = 50^\circ$$

n is the arc formed by the central angle d, so it must be congruent to d.

$$n = 50^{\circ}$$

h and n are arcs intercepted by congruent lines and must be congruent.

$h = 50^{\circ}$

h is the arc formed by the central angle b, so b must be congruent to h.

$b = 50^{\circ}$

f is formed by a radius to a tangent and must be a right angle.

f = 90°

j is formed by a radius to a tangent and must be a right angle.

j = 90°

e forms a linear pair with *a*.

 $e = 130^{\circ}$

d, b, and c form a line and must add to 180°.

$c = 80^{\circ}$

m is the arc formed by the central angle c, so it must be congruent to c.

$m = 80^{\circ}$

k, j, and the unmarked angle between them form a line and must add to 180°. The unmarked angle is the other base angle of an isosceles triangle (because the radii of the circle must be congruent.) So, the unmarked angle is 50°. 180 - (50 + 90) = 40.

$k = 40^{\circ}$