Lesson 6.1 - Tangent Properties

Central Angle - A central angle is an angle whose vertex is the center of the circle and whose sides pass through the circle.

Intercepted Arc - $\angle B O A$ is said to intercept $\overparen{A B}$ because the arc is within the angle. The measure of an arc is defined to be the measure of its central angle.

Tangent Conjecture - A tangent to a circle is perpendicular to the radius drawn to the point of tangency.

Tangent Segments Conjecture - Tangent segments to a circle from a point outside the circle are congruent.

Example 1: Find the missing measure.

Rays r and s are tangents.

$$
w=
$$

A tangent to a radius makes a right angle.

We can then look at the quadrilateral.

Remember than angles of a quadrilateral add to $360^{\circ} .360-(90+90+54)=360-234=$ 126

Since the measure of an arc must be the same as the measure of the central angle that forms it, $\boldsymbol{w}=\mathbf{1 2 6}^{\circ}$.

Example 2: Find the missing measure.
$\overleftrightarrow{A B}$ is tangent to both circles and $m \overparen{A M C}=295^{\circ}$.
$m \angle B Q X=$ \qquad

If $m \overparen{A M C}=295^{\circ}$, then $m \overparen{A C}=65^{\circ}$. Since arc measures are equal to the measures of the central angles that form $m \angle A P C=65^{\circ}$. We also know that $\overline{A P}$ and $\overline{Q B}$ are radii to tangent $\overleftrightarrow{A B}$. So, $m \angle P A X=90^{\circ}$ and $m \angle Q B X=90^{\circ}$.

We can solve $\triangle A P X$.
$180^{\circ}-\left(65^{\circ}+90^{\circ}\right)=25^{\circ}$. Vertical angles are congruent.

We can now solve $\triangle B Q X .180^{\circ}-\left(25^{\circ}+90^{\circ}\right)=65^{\circ}$.
$m \angle B Q X=65^{\circ}$

Example 3: Complete.
$\overleftrightarrow{P Q}$ is tangent to two externally tangent noncongruent circles, M and N.
a. $m \angle N Q P=$ \qquad , $m \angle M P Q=$ \qquad
b. What kind of quadrilateral is $M N Q P$? Explain your reasoning.

$\overline{M P}$ is a radius that intersects tangent line $\overleftrightarrow{P Q}$ at the point of tangency, so they must be perpendicular.
$m \angle M P Q=90^{\circ}$
$\overline{N Q}$ is a radius that intersects tangent line $\overleftrightarrow{P Q}$ at the point of tangency, so they must be perpendicular.
$m \angle N Q P=90^{\circ}$
Since corresponding angles would be congruent, we know that $\overline{M P} \| \overline{N Q}$. Since the circles are not congruent, we know that $\overline{M N} \nVdash \overline{P Q}$. So, the quadrilateral has one pair of parallel sides and is a trapezoid.

Example 4: Explain why $\overline{P A} \cong \overline{P D}$.
$\overrightarrow{P A}, \overrightarrow{P B}, \overrightarrow{P C}$, and $\overrightarrow{P D}$ are tangents.

Since $\overline{P A}$ and $\overline{P B}$ are tangent to the same circle from the same point outside the circle, we know that $\overline{P A} \cong \overline{P B}$.

Since $\overline{P B}$ and $\overline{P C}$ are tangent to the same circle from the same point outside the circle, we know that $\overline{P B} \cong \overline{P C}$.

Since $\overline{P C}$ and $\overline{P D}$ are tangent to the same circle from the same point outside the circle, we know that $\overline{P C} \cong \overline{P D}$.

So, $\overline{P A} \cong \overline{P B} \cong \overline{P C} \cong \overline{P D}$.

