<u>Lesson 6.1 – Tangent Properties</u>

Central Angle - A central angle is an angle whose vertex is the center of the circle and whose sides pass through the circle.

Intercepted Arc - $\angle BOA$ is said to intercept \widehat{AB} because the arc is within the angle. The measure of an arc is defined to be the measure of its central angle.

Tangent Conjecture - A tangent to a circle is perpendicular to the radius drawn to the point of tangency.

Tangent Segments Conjecture - Tangent segments to a circle from a point outside the circle are congruent.

Example 1: Find the missing measure.

Rays *r* and *s* are tangents.

A tangent to a radius makes a right angle.

We can then look at the quadrilateral.

Remember than angles of a quadrilateral add to 360° . 360 - (90 + 90 + 54) = 360 - 234 = 126

Since the measure of an arc must be the same as the measure of the central angle that forms it, $w = 126^{\circ}$.

Example 2: Find the missing measure.

 \overrightarrow{AB} is tangent to both circles and $m \overrightarrow{AMC} = 295^{\circ}$.

 $m \angle BQX =$

If $\widehat{mAMC} = 295^\circ$, then $\widehat{mAC} = 65^\circ$. Since arc measures are equal to the measures of the central angles that form $m \angle APC = 65^\circ$. We also know that \overline{AP} and \overline{QB} are radii to tangent \overleftarrow{AB} . So, $m \angle PAX = 90^\circ$ and $m \angle QBX = 90^\circ$.

We can solve $\triangle APX$.

 $180^{\circ} - (65^{\circ} + 90^{\circ}) = 25^{\circ}$. Vertical angles are congruent.

We can now solve ΔBQX . $180^{\circ} - (25^{\circ} + 90^{\circ}) = 65^{\circ}$.

 $m \angle BQX = 65^{\circ}$

Example 3: Complete.

 \overrightarrow{PQ} is tangent to two externally tangent noncongruent circles, M and N.

- a. $m \angle NQP =$ _____, $m \angle MPQ =$ _____
- b. What kind of quadrilateral is MNQP? Explain your reasoning.

 \overline{MP} is a radius that intersects tangent line \overrightarrow{PQ} at the point of tangency, so they must be perpendicular.

$m \angle MPQ = 90^{\circ}$

 \overline{NQ} is a radius that intersects tangent line \overrightarrow{PQ} at the point of tangency, so they must be perpendicular.

$m \angle NQP = 90^{\circ}$

Since corresponding angles would be congruent, we know that $\overline{MP}||\overline{NQ}$. Since the circles are not congruent, we know that $\overline{MN} \notin \overline{PQ}$. So, the quadrilateral has one pair of parallel sides and is a trapezoid.

Example 4: Explain why $\overline{PA} \cong \overline{PD}$.

 $\overrightarrow{PA}, \overrightarrow{PB}, \overrightarrow{PC}$, and \overrightarrow{PD} are tangents.

Since \overline{PA} and \overline{PB} are tangent to the same circle from the same point outside the circle, we know that $\overline{PA} \cong \overline{PB}$.

Since \overline{PB} and \overline{PC} are tangent to the same circle from the same point outside the circle, we know that $\overline{PB} \cong \overline{PC}$.

Since \overline{PC} and \overline{PD} are tangent to the same circle from the same point outside the circle, we know that $\overline{PC} \cong \overline{PD}$.

So, $\overline{PA} \cong \overline{PB} \cong \overline{PC} \cong \overline{PD}$.