Lesson 5.6 - Properties of Special Parallelograms

Rhombus Diagonals Conjecture - The diagonals of a rhombus are perpendicular, and they bisect each other.

Rhombus Angles Conjecture - The diagonals of a rhombus bisect the angles of the rhombus.

Rectangle Diagonals Conjecture - The diagonals of a rectangle are congruent and bisect each other.

REMINDER

Remember that a square is both a rhombus and a rectangle, so each of the previous three conjectures apply to a square as well.

Example 1: Find each missing measure
$P Q R S$ is a rectangle and $O S=16$.
$O Q=$ \qquad
$m \angle Q R S=$ \qquad
$P R=$ \qquad

We know that the diagonals of a rectangle bisect each other (cut each other in half). So, since $O S=16$, we know that $O Q$ should also equal sixteen.
$O Q=16$

Since we are told that $P Q R S$ is a rectangle, we know that each of the angles of $P Q R S$ is a right angle.
$m \angle Q R S=90^{\circ}$

We know that $O S=16$. We determined that $O Q=16$. That means that $S Q=32$. Since the diagonals of a rectangle are congruent, then $P R$ should be the same as $S Q$.
$P R=32$

Example 2: Find each missing measure
$K L M N$ is a square and $N M=8$.
$m \angle O K L=$ \qquad
$m \angle M O L=$ \qquad
Perimeter $K L M N=$ \qquad

Since $K L M N$ is a square, we know that all of the angles of $K L M N$ are right angles. We also know that the angles of a rhombus (remember that a square is a type of rhombus) are bisected by the diagonals. This means that each right angle is cut in half by the diagonals.
$\frac{90}{2}=45$
$m \angle O K L=45^{\circ}$

The diagonals of a rhombus are perpendicular (Rhombus Diagonals Conjecture). Remember that perpendicular means intersecting at right angles.
$m \angle M O L=90^{\circ}$

We know that squares are equilateral. So, to find the perimeter of the square, we need to multiply a side length by 4 .
$8 \cdot 4=32$
Perimeter KLMN = 32

Example 3: Find each missing measure

$A B C D$ is a rhombus, $A D=11$, and $D O=6$.
$O B=$ \qquad
$B C=$ \qquad
$m \angle A O D=$ \qquad

The diagonals of a rhombus bisect each other. So, $D O=O B$.
$O B=6$

A rhombus is equilateral. So, all sides of the rhombus are congruent.
$B C=11$

The diagonals of a rhombus are perpendicular.
$m \angle A O D=90^{\circ}$

Example 4: Match the description with all the terms that fit it
a. Trapezoid
b. Isosceles triangle
c. Parallelogram
d. Rhombus
e. Kite
f. Rectangle
g. Square
h. All quadrilaterals
\qquad Diagonals bisect each other.

The figures that have diagonals that bisect each other are parallelogram, rhombus, rectangle, and square. So, c, d, f, g.

Example 5: Match the description with all the terms that fit it
a. Trapezoid
b. Isosceles triangle
c. Parallelogram
d. Rhombus
e. Kite
f. Rectangle
g. Square
h. All quadrilaterals
\qquad Diagonals are perpendicular.

The figures that have diagonals that are perpendicular are rhombus, square, and kite. So, d, e, g.

Example 6: Match the description with all the terms that fit it

a. Trapezoid
b. Isosceles triangle
c. Parallelogram
d. Rhombus
e. Kite
f. Rectangle
g. Square
h. All quadrilaterals
\qquad Diagonals are congruent,

The figures that have diagonals that are congruent are rectangle, and square. So, f, g.
**An isosceles trapezoid has diagonals that are congruent, but not all trapezoids.

Example 7: Match the description with all the terms that fit it
a. Trapezoid
b. Isosceles triangle
c. Parallelogram
d. Rhombus
e. Kite
f. Rectangle
g. Square
h. All quadrilaterals
\qquad Measures of interior angles sum to 360°.

All quadrilaterals have interior angles that add to 360°. So, a, $\mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}, \mathbf{g}, \mathbf{h}$.

Example 8: Match the description with all the terms that fit it
a. Trapezoid
b. Isosceles triangle
c. Parallelogram
d. Rhombus
e. Kite
f. Rectangle
g. Square
h. All quadrilaterals
\qquad Opposite sides are congruent.

The figures that have opposite sides congruent are parallelogram, rhombus, rectangle, and square. So, c, d, f, g.

Example 9: Match the description with all the terms that fit it
a. Trapezoid
b. Isosceles triangle
c. Parallelogram
d. Rhombus
e. Kite
f. Rectangle
g. Square
h. All quadrilaterals
__Opposite angles are congruent.

The figures that have opposite angles congruent are parallelogram, rhombus, rectangle, and square. So, c, d, f, g.
**A kite does have one set of opposite angles (the nonvertex angles) that are congruent. However, since the vertex angles are not congruent, I excluded kite from this set.

Example 10: Match the description with all the terms that fit it
a. Trapezoid
b. Isosceles triangle
c. Parallelogram
d. Rhombus
e. Kite
f. Rectangle
g. Square
h. All quadrilaterals
\qquad Both diagonals bisect angles.

The figures that have both diagonals bisecting angles are rhombus, and square. So, d, g.

Example 11: Match the description with all the terms that fit it

a. Trapezoid
b. Isosceles triangle
c. Parallelogram
d. Rhombus
e. Kite
f. Rectangle
g. Square
h. All quadrilaterals
\qquad Diagonals are perpendicular bisectors of each other.

The figures that have diagonals that are perpendicular bisectors of each other are rhombus, and square. So, d, g.

