Lesson 5.5 - Properties of Parallelograms

Parallelogram Opposite Angles Conjecture - The opposite angles of a parallelogram are congruent.

Parallelogram Consecutive Angles Conjecture - The consecutive angles of a parallelogram are supplementary.

Parallelogram Opposite Sides Conjecture - The opposite sides of a parallelogram are congruent.

Parallelogram Diagonals Conjecture - The diagonals of a parallelogram bisect each other.

Vector - A vector is a quantity that has both magnitude and direction.

Resultant Vector - A resultant vector is the sum of vectors. It can be found by drawing the diagonal of the parallelogram with the vectors as sides.

Example 1: Find the missing measures in the parallelogram.
Perimeter $A B C D=$ \qquad

We know that the opposite sides of a parallelogram are congruent. That means that $A B=26 \mathrm{~cm}$ and $C B=15 \mathrm{~cm}$. To find the perimeter, we can add all four sides.
$15+26+15+26=82$
Perimeter $A B C D=82 \mathrm{~cm}$

Example 2: Find the missing measures in the parallelogram.
$A O=11$, and $B O=7$
$A C=$ \qquad , $B D=$

We know that the diagonals of a parallelogram bisect each other. So, $A O=O C$ and $B O=O D$.

To find $A C$, we need to add $A O$ and $O C$.
$11+11=22$
$A C=22$

To find $B D$, we need to add $B O$ and $O D$.
$7+7=14$
$B D=14$

Example 3: Find the missing measures in the parallelogram.
Perimeter $A B C D=46$
$A B=$ \qquad , $B C=$ \qquad

We know that opposite sides of a parallelogram are congruent. So, this parallelogram has two sides with length $x+9$ and two sides with length $2 x-7$. If we add up all four sides, we should get the perimeter of 46 .
$2(x+9)+2(2 x-7)=46$
$2 x+18+4 x-14=46$
$6 x+4=46$
$-4 \quad-4$
$6 x=42$
$\overline{6} \quad \overline{6}$
$x=7$
$A B=x+9=7+9=16$
$A B=16$
$B C=2 x-7=2(7)-7=14-7=7$
$B C=7$

Example 4: Find the missing measures in the parallelogram.
$a=$ \qquad , $b=$ \qquad , $c=$ \qquad

We can start by finding c since we know it is a linear pair with the 110° angle.
$180-110=70$
$c=70^{\circ}$

Since this is a parallelogram, we can find the measures of alternate interior angles to those we know.

We can find a using the triangle with $a, 110^{\circ}$, and 19°.
$110+19=129$
$180-129=51$
$a=51^{\circ}$

We can find b using the triangle with b, c, and 62°.
$70+62=132$
$180-132=48$
$b=48^{\circ}$

Example 5: Find the missing measures in the parallelogram.
Perimeter $A B C D=119$, and $B C=24$
$A B=$ \qquad

We know that opposite sides of a parallelogram are congruent. Since $B C=24$ then $A D=24$. We do not know the length of $A B$ or $D C$, but we know they will be the same. So, let's use x to represent their measures. Adding all of the sides will give us the perimeter of 119 .
$2(24)+2(x)=119$
$48+2 x=119$
$-48 \quad-48$
$2 x=71$
$\overline{2} \quad \overline{2}$
$x=35.5 \quad * *$ This means both sides $A B$ and $D C$ have a measure of 35.5
$A B=35.5$

Example 6: Find the missing measures in the parallelogram.
Perimeter $A B C D=16 x-12$
$A D=$ \qquad

Opposite sides of a parallelogram are congruent. We can add up the four sides and set that equal to the perimeter.
$2(63)+2(4 x+3)=16 x-12$
$126+8 x+6=16 x-12$
$132+8 x=16 x-12$
$-8 x-8 x$
$132=8 x-12$
$+12+12$
$144=8 x$
$\overline{8} \quad \overline{8}$
$18=x$
$A D=4 x+3=4(18)+3=72+3=75$
$A D=75$

Example 7: Complete.

Ball B is struck at the same instant by two forces, $\overrightarrow{F_{1}}$ and $\overrightarrow{F_{2}}$. Show the resultant force on the ball.

In order to find the resultant vector, we need to create a parallelogram using vectors equaivalent to $\overrightarrow{F_{1}}$ and $\overrightarrow{F_{2}}$.

The diagonal of the parallelogram is the resultant vector. So, we need to draw that in.

The blue arrow shows the resultant force on the ball.

