Lesson 4.8 - Special Triangle Conjectures

Median - The segment connecting the vertex of a triangle to the midpoint of its opposite side is a median.

Altitude - An altitude of a triangle is a perpendicular segment from a vertex to the opposite side or to a line containing the opposite side.

Equilateral/Equiangular Triangle Conjecture - Every equilateral triangle is equiangular, and, conversely, every equiangular triangle is equilateral.

Example 1: Use the figure.
$\overline{C D}$ is a median, perimeter $\triangle A B C=60$, and $A C=22 . A D=$ \qquad

If $A C=22$ then $B C=22$ as well.
The perimeter $\triangle A B C=60 . \overline{A C}$ and $\overline{B C}$ make up 44 of that 60 . That leaves side $A B=16$.
To say that $\overline{C D}$ is a median means that $\overline{A D} \cong \overline{B D}$ and that D is a midpoint. So, $\boldsymbol{A D}=\mathbf{8}$.

Example 2: Use the figure.
$\overline{C D}$ is an angle bisector, and $m \angle A=54^{\circ} . m \angle A C D=$

If $m \angle A=54^{\circ}$ then $m \angle B=54^{\circ}$ as well because they are base angles of an isosceles triangle.
The angles of $\triangle A B C$ add to $180^{\circ} . \angle A$ and $\angle B$ make up 108° of that 180°. That leaves $m \angle A C B=72^{\circ}$.

To say that $\overline{C D}$ is an angle bisector means that $\angle A C D \cong \angle B C D$. So, $\boldsymbol{m} \angle \boldsymbol{A C D}=\mathbf{3 6}$.

Example 3: Use the figure.
$\overline{C D}$ is an altitude, perimeter $\triangle A B C=42, m \angle A C D=38^{\circ}$, and $A D=8 . m \angle B$ \qquad ,
$C B=$ \qquad

To say that $\overline{C D}$ is an altitude means that $\angle A D C$ and $\angle C D B$ are right angles.
The angles of $\triangle A D C$ add to $180^{\circ} . m \angle A C D=38^{\circ}$ and $m \angle A D C=90^{\circ}$ which makes up 128° of that 180°. That leaves $m \angle A=52^{\circ}$.

Since $\triangle A B C$ is isosceles and $\angle A$ and $\angle B$ are the base angles, then $\boldsymbol{m} \angle \boldsymbol{B}=\mathbf{5 2}^{\circ}$.
If $A D=8$ then $D B=8$ as well because the altitude in an isosceles triangle is also the median.
The perimeter $\triangle A B C=42 . \overline{A B}$ makes up 16 of that 42 . That leaves 26 to split between the two congruent sides. So, $\boldsymbol{C B}=13$.

Example 4: Complete

$\triangle E Q U$ is equilateral.
$m \angle E=$ \qquad

We know that equilateral triangles are also equiangular. So, since triangle angles add to 180°, we can split the 180° evenly three ways and find that each angle is 60°.
$m \angle E=60^{\circ}$

Example 5: Complete
$\triangle A N G$ is equiangular and perimeter $\triangle A N G=51$.
$A N=$ \qquad

We know that equiangular triangles are also equilateral. So, since the sides of the triangle add to 51, we can split that 51 three ways and find that each side is 17 .
$A N=17$

