## Slope from Graphs

## Slope:

The slope of a line is the ratio of the change in the $y$-coordinates (rise) to the change in the $x$ coordinates (run).


For simplicity, I will use the delta symbol $(\Delta)$ to represent "change in." So, $\frac{\text { change in } y}{\text { change in } x}=\frac{\Delta y}{\Delta x}$.


For this lesson we will focus solely on the graphs. So, we will be concerned with vertical change $(\Delta y)$ and horizontal change $(\Delta x)$

## Example 1:

Find the slope of the line.


We can start at either point, and we will get the same slope.

If we start with the point on the left:
Let's start by finding the vertical change to get even with the rightmost point.

It is a negative one, because we have to move down which is a negative movement.


Now, let's find the horizontal change to meet up with the second point.

It is a positive eight because we have to move to the right which is a positive movement.

If we start with the point on the right:
Let's start by finding the vertical change to get even with the leftmost point.

It is a positive one, because we have to move up which is a negative movement.


Now, let's find the horizontal change to meet up with the second point.

It is a negative eight because we have to move to the left which is a negative movement.


Now, we calculate slope. $\frac{\Delta y}{\Delta x}=\frac{-1}{8}=-\frac{1}{8}$


Now, we calculate slope. $\frac{\Delta y}{\Delta x}=\frac{1}{-8}=-\frac{1}{8}$

We get the same slope either way. The slope is $-\frac{\mathbf{1}}{\mathbf{8}}$.
As a double-check, notice that our line is falling and we have a negative slope, so we know we have probably done this problem correctly.
**As we move forward in this lesson it will be important to remember that moving up or right are positive movements. Moving down or left are negative movements.

## Example 2:

Find the slope of the line.


This is a horizontal line, so the slope is $\mathbf{0}$.

## Example 3:

Find the slope of the line.


We can start at either point, and we will get the same slope.
If we start with the point on the left:
Let's find our changes.


Now, we calculate slope. $\frac{\Delta y}{\Delta x}=\frac{-5}{5}=-1$
We get the same slope either way. The slope is $\mathbf{- 1}$.
As a double-check, notice that our line is falling and we have a negative slope, so we know we have probably done this problem correctly.

## Example 4:

Find the slope of the line.


We can start at either point, and we will get the same slope.

If we start with the point on the left:


Now, we calculate slope. $\frac{\Delta y}{\Delta x}=\frac{6}{5}$

If we start with the point on the right:


Now, we calculate slope. $\frac{\Delta y}{\Delta x}=\frac{-6}{-5}=\frac{6}{5}$

We get the same slope either way. The slope is $\frac{6}{5}$.
As a double-check, notice that our line is rising and we have a positive slope, so we know we have probably done this problem correctly.

## Example 5:

Find the slope of the line.


We can start at either point, and we will get the same slope.

If we start with the point on the left:


Now, we calculate slope. $\frac{\Delta y}{\Delta x}=\frac{4}{2}=2$

If we start with the point on the right:


Now, we calculate slope. $\frac{\Delta y}{\Delta x}=\frac{-4}{-2}=2$

We get the same slope either way. The slope is 2.
As a double-check, notice that our line is rising and we have a positive slope, so we know we have probably done this problem correctly.

Example 6:
Find the slope of the line.


This is a vertical line, so the slope is undefined.

