Slope from Graphs

Slope:

The slope of a line is the ratio of the change in the y-coordinates (rise) to the change in the x-coordinates (run).

KEY CO	ONCEPT		Slope
Words	The slope of a line is the ratio of the rise to the run.	Graph	$x_2 - x_1$
Symbols	The slope <i>m</i> of a nonvertical line through any two points, (x_1, y_1) and (x_2, y_2) , can be found as follows.		$y_2 - y_1$ (x ₁ , y ₁)
	$\boldsymbol{m} = \frac{\boldsymbol{y}_2 - \boldsymbol{y}_1}{\boldsymbol{x}_2 - \boldsymbol{x}_1} \xleftarrow{\text{change in } \boldsymbol{y}}_{\text{change in } \boldsymbol{x}}$		

For simplicity, I will use the delta symbol (Δ) to represent "change in." So, $\frac{change \text{ in } y}{change \text{ in } x} = \frac{\Delta y}{\Delta x}$.

For this lesson we will focus solely on the graphs. So, we will be concerned with vertical change (Δy) and horizontal change (Δx)

Example 1:

Find the slope of the line.

We can start at either point, and we will get the same slope.

If we start with the point on the left:

Let's start by finding the vertical change to get even with the rightmost point.

It is a negative one, because we have to move down which is a negative movement.

Now, let's find the horizontal change to meet up with the second point.

It is a positive eight because we have to move to the right which is a positive movement. If we start with the point on the right:

Let's start by finding the vertical change to get even with the leftmost point.

It is a positive one, because we have to move up which is a negative movement.

Now, let's find the horizontal change to meet up with the second point.

It is a negative eight because we have to move to the left which is a negative movement.

As a double-check, notice that our line is falling and we have a negative slope, so we know we have probably done this problem correctly.

**As we move forward in this lesson it will be important to remember that moving up or right are positive movements. Moving down or left are negative movements.

Example 2:

Find the slope of the line.

This is a horizontal line, so the slope is 0.

Example 3:

Find the slope of the line.

We can start at either point, and we will get the same slope.

If we start with the point on the left:

Let's find our changes.

Now, we calculate slope. $\frac{\Delta y}{\Delta x} = \frac{-5}{5} = -1$

We get the same slope either way. The slope is -1.

As a double-check, notice that our line is falling and we have a negative slope, so we know we have probably done this problem correctly.

Now, we calculate slope. $\frac{\Delta y}{\Delta x} = \frac{5}{-5} = -1$

Example 4:

Find the slope of the line.

We can start at either point, and we will get the same slope.

If we start with the point on the left:

We get the same slope either way. The slope is $\frac{6}{5}$.

As a double-check, notice that our line is rising and we have a positive slope, so we know we have probably done this problem correctly.

If we start with the point on the right:

Example 5:

Find the slope of the line.

We can start at either point, and we will get the same slope.

If we start with the point on the left:

If we start with the point on the right:

We get the same slope either way. The slope is 2.

As a double-check, notice that our line is rising and we have a positive slope, so we know we have probably done this problem correctly.

Example 6:

Find the slope of the line.

This is a vertical line, so **the slope is undefined.**