Lesson 2.6 - Special Angles on Parallel Lines

Transversal - A line intersecting two or more other lines in the plane is called a transversal.

Corresponding Angles - Corresponding angles are angles that are in the same respective place on each of the lines cut by the transversal.

Pairs of Corresponding Angles: $\angle 1 \& \angle 5, \angle 2 \& \angle 6, \angle 3 \& \angle 7, \angle 4 \& \angle 8$

Corresponding Angles Conjecture (CA Conjecture) - If two parallel lines are cut by a transversal, then corresponding angles are congruent.

$$
\angle 2 \cong \angle 6
$$

Alternate Interior Angles - Alternate interior angles fall between the two lines cut by the transversal, and on opposite sides of the transversal.

Pairs of Alternate Interior Angles: $\angle 3 \& \angle 6, \angle 4 \& \angle 5$

Alternate Interior Angle Conjecture (AIA Conjecture) - If two parallel lines are cut by a transversal, then alternate interior angles are congruent.

$$
\angle 3 \cong \angle 6
$$

Alternate Exterior Angles - Alternate exterior angles fall outside of the two lines cut by the transversal and on opposite sides of the transversal.

Pairs of Alternate Exterior Angles: $\angle 1 \& \angle 8, \quad \angle 2 \& \angle 7$

Example 1: Find each lettered angle measure using conjectures.

$\boldsymbol{a}=54^{\circ} \quad a$ and the 54° angle are vertical angles and are congruent.
$\boldsymbol{b}=54^{\circ} \quad b$ and the 54° angle are corresponding angles on parallel lines and are congruent.
$\boldsymbol{c}=54^{\circ} \quad c$ and the 54° angle are alternate exterior angles on parallel lines and are congruent.

Example 2: Find each lettered angle measure using conjectures.

Let's label a couple of angles to make referring to them easier.

x and the 65° angle are alternate exterior angles on parallel lines and are congruent, so $x=65^{\circ}$.
$\boldsymbol{a}=115^{\circ} \quad a$ and x are a linear pair of angles.
$\boldsymbol{b}=65^{\circ} \quad b$ and y are a linear pair of angles. y and a are corresponding angles on parallel lines and are congruent.
$\boldsymbol{c}=115^{\circ} \quad c$ and y are corresponding angles on parallel lines and are congruent.
$\boldsymbol{d}=65^{\circ} \quad d$ and b are alternate exterior angles on parallel lines and are congruent.

Example 3: Find each lettered angle measure using conjectures.

Let's label a couple of angles to make referring to them easier.

x and the 54° angle are corresponding angles on parallel lines and are congruent, so $x=54^{\circ}$. x and y are marked congruent, so $y=54^{\circ}$.
$\boldsymbol{a}=72^{\circ} \quad a, x$ and y are supplementary so they add to 180°.
$\boldsymbol{b}=\mathbf{1 2 6}^{\circ} \quad b$ and the 54° angle are a linear pair of angles.

Example 4: Use conjectures to determine whether $\ell_{1} \| \ell_{2}$ and explain why. If not enough information is given, write "cannot be determined."

Let's label an angle to make references easier.

The 62° angle and x form a linear pair of angles and must add to 180°. That means that $x=$ 118°. If $\ell_{1} \| \ell_{2}$, then the 118° angle and x should be alternate exterior angles on parallel lines and congruent. Since the 118° angle and x are congruent, then $\ell_{1} \| \ell_{2}$.

Example 5: Use conjectures to determine whether $\ell_{1} \| \ell_{2}$ and explain why. If not enough information is given, write "cannot be determined."

Let's label an angle to make references easier.

The 25° angle and x form a linear pair of angles and must add to 180°. That means that $x=$ 155°. If $\ell_{1} \| \ell_{2}$, then the 95° angle and x should be corresponding angles on parallel lines and congruent. Since the 95° angle and x are not congruent, then $\ell_{1} \nVdash \ell_{2}$ (the line through parallel mark, means "not", so we are saying that the lines are not parallel).

Example 6: Use conjectures to determine whether $\ell_{1} \| \ell_{2}$ and explain why. If not enough information is given, write "cannot be determined."

The only line that passes through both ℓ_{1} and ℓ_{2} is the highlighted line. Since we have no information about any of the angles formed by this line and ℓ_{1} or ℓ_{2}, there is not enough information.

Cannot be determined.

Example 7: Find each lettered angle measure using conjectures.

Let's label an angle to make references easier.

x, the 44° angle, and the 78° angle are supplementary angles so $x=58^{\circ}$.
$\boldsymbol{a}=\mathbf{1 0 2}^{\circ} \quad a$ and b are a linear pair of angles, so solve for b first.
$\boldsymbol{b}=78^{\circ} \quad b$ and the 78° angle are corresponding angles on parallel lines and are congruent.
$\boldsymbol{c}=\mathbf{5 8}{ }^{\circ} \quad c$ and x are alternate exterior angles on parallel lines an are congruent.
$\boldsymbol{d}=\mathbf{1 2 2}^{\circ} \quad c$ and d are a linear pair of angles.
$\boldsymbol{e}=26^{\circ} \quad e$, the 90° angle, and the 64° angle are supplementary angles.
$\boldsymbol{f}=\mathbf{5 8}^{\circ} \quad f$ and x are vertical angles.

Example 8: Find the value of x.

The two angles marked x and $3 x-160^{\circ}$ are alternate interior angles on congruent lines and must be congruent. Since they are congruent, we can set the angles equal to each other and solve.
$x=3 x-160$
$-2 x=-160$
$x=80$
$x=80^{\circ}$

Example 9: Find the values of x and y.

We should start by comparing angles that have like variables, so let's start with the angles that have an x.

The two angles marked $182^{\circ}-4 x$ and $5 x+2^{\circ}$ are vertical angles and must be congruent. Since they are congruent, we can set the angles equal to each other and solve.

$$
\begin{aligned}
& 182-4 x=5 x+2 \\
& 182=9 x+2 \\
& 180=9 x \\
& 20=x \\
& x=20^{\circ}
\end{aligned}
$$

The two angles marked $182^{\circ}-4 x$ and $4 y+2^{\circ}$ are corresponding angles on parallel lines and must be congruent. Since they are congruent, we can set the angles equal to each other and solve.
$182-4 x=4 y+2$
We also know that $x=20^{\circ}$, so we can replace x with 20 .

$$
\begin{aligned}
& 182-4(20)=4 y+2 \\
& 182-80=4 y+2 \\
& 102=4 y+2 \\
& 100=4 y \\
& 25=y \\
& y=25^{\circ}
\end{aligned}
$$

