Lesson 2.5 – Angle Relationships

Linear Pair Conjecture - If two angles form a linear pair, then the measure of the angles add up to 180°.

Vertical Angles Conjecture - If two angles are vertical angles, then they are congruent.

Example 1: Find each lettered angle measure without a protractor.

Let's label a couple of angles so that we can talk about them more clearly.

- $x = 112^{\circ}$ x and the 112° angle are vertical angles and are therefore congruent.
- $y = 112^{\circ}$ y is marked congruent to x, so it must equal the same degree measure.
- $a = 68^{\circ}$ a and y are a linear pair of angles and must add to 180° (a + 112 = 180).
- $b = 112^{\circ}$ y and b are vertical angles and are therefore congruent.
- $c = 68^{\circ}$ c and a are vertical angles and are therefore congruent.

Example 2: Find each lettered angle measure without a protractor.

 $a = 127^{\circ}$ a, the 15° angle and the 38° angles are supplementary because together they form a line. So, they must add to 180°.

$$a + 15 + 38 = 180$$

 $a + 53 = 180$

Example 3: Find each lettered angle measure without a protractor.

Let's label a couple of angles so that we can talk about them more clearly.

a is a vertical angle to y, so those two must be congruent. y is marked congruent to x, therefore a, x and y are all congruent to each other and have the same measure.

 $a = 35^{\circ}$ a, x, the 70° angle and the 40° angle are supplementary because together they form a line. So, they must add to 180°.

$$a + x + 70 + 40 = 180$$

$$a + x + 110 = 180$$
Since x and a have the same

$$2a + 110 = 180$$
measure, we can say that $a + x$ is the same as having 2 a.

- $b = 40^{\circ}$ The 40° angle and b are vertical angles and are therefore congruent.
- $c = 35^{\circ}$ c and x are vertical angles and are therefore congruent. We established that x has the same measure as a.
- $d = 70^{\circ}$ d and the 70° angle are vertical angles and are therefore congruent.

Example 4: Find each lettered angle measure without a protractor.

<i>a</i> = 90°	a and the right angle (90°) are a linear pair of angles and must add to 180°.
b = 90°	<i>b</i> and the right angle are vertical angles and are therefore congruent.
$c = 42^{\circ}$	c and the 138° angle are a linear pair of angles and must add to 180°.
$d = 48^{\circ}$	d and the 132° angle are a linear pair of angles and must add to 180°.
<i>e</i> = 132°	e and the 132° angle are vertical angles and are congruent.

Example 5: Find each lettered angle measure without a protractor.

- $a = 20^{\circ}$ a and the 70° angle are a complementary pair of angles (notice the right angle marking that passes through a and the 70° angle) and must add to 90°.
- $b = 70^{\circ}$ b and a are a complementary pair of angles (notice the right angle marking that passes through a and b) and must add to 90°.
- $c = 20^{\circ}$ c, b, a and the 70° angle are supplementary because they form a line when all combined together. So, they must add to 180°.
- $d = 70^{\circ}$ d and the 70° angle are vertical angles and are congruent.
- $e = 110^{\circ}$ e and d are a linear pair of angles and must add to 180°.

Example 6: Find each lettered angle measure without a protractor.

- $a = 70^{\circ}$ a and the 110° angle are a linear pair of angles and must add to 180°.
- $b = 55^{\circ}$ c, b, and the 100° angle are supplementary because they form a line when all combined together. So, they must add to 180°. Find the measure of c first, and then calculate b.
- $c = 25^{\circ}$ c and the 25° angle are vertical angles and are congruent.

Example 7: Tell whether each statement is always (A), sometimes (S), or never (N) true.

_____ The sum of the measures of two acute angles equals the measure of an obtuse angle.

The key in a problem like this is to try some examples. Acute angles are less than 90°. So, if I think about $15^\circ + 36^\circ = 51^\circ$, I have two acute angles that add to another acute angle. So, we know that this statement is not "always true". Now we must decide between sometimes or never true. So, I want to see if I can think of an example where two acute angles would equal the measure of an obtuse angle. $50^\circ + 51^\circ = 101^\circ$. Since I can think of an example where the statement is true, it cannot be "never true". Therefore, our answer is (S), sometimes true.

Example 8: Tell whether each statement is always (A), sometimes (S), or never (N) true.

_____ If two angles form a linear pair, then they are complementary.

A linear pair of angles form a line and add to 180°. A complementary pair of angles form a right angle and add to 90°. Since the two things are not the same, our answer is (N), never true.

Example 9: Fill in each blank to make a true statement.

If one angle of a linear pair is obtuse, then the other is ______.

A linear pair of angles form a line and add to 180°. An obtuse angle measures more than 90°. If you think about subtracting a number larger than 90° from 180°, you will be left with a value that is less than 90°, which is the definition of an acute angle.

acute

Example 10: Fill in each blank to make a true statement.

If $\angle A \cong \angle B$ and the supplement of $\angle B$ has measure 22°, then $m \angle A =$ _____.

 $\angle A \cong \angle B$ means that those angles have the same measure. A supplement means that that angles are supplementary and add to 180°. So, $m \angle B + 22^\circ = 180^\circ$. By solving, we find that $m \angle B = 158^\circ$. Since we established that $\angle A \cong \angle B$, then $m \angle A = m \angle B$.

$m \angle A = 158^{\circ}$

Example 11: Fill in each blank to make a true statement.

If $\angle P$ is a right angle and $\angle P$ and $\angle Q$ form a linear pair, then $m \angle Q$ is _____.

 $\angle P$ is a right angle, so $m \angle P = 90^\circ$. A linear pair of angles form a line and add to 180° . So, $m \angle P + m \angle Q = 180^\circ$. Since we know $m \angle P = 90^\circ$, we can write $90^\circ + m \angle Q = 180^\circ$. By solving, we find that $m \angle Q = 90^\circ$.

90°

Example 12: Fill in each blank to make a true statement.

If $\angle S$ and $\angle T$ are complementary and $\angle T$ and $\angle U$ are supplementary, then $\angle U$ is a(n)______ angle.

A complementary pair of angles form a right angle and add to 90°, so $m \angle S + m \angle T = 90^\circ$. Two angles can only be complementary if they are each acute. A supplementary pair of angles add to 180°, so $m \angle T + m \angle U = 180^\circ$. Since we know $\angle P$ is acute, that means $\angle U$ must be obtuse.

obtuse