Lesson 2.5-Angle Relationships

Vertical Angles Conjecture - If two angles are vertical angles, then they are congruent.
$\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$

Example 1: Find each lettered angle measure without a protractor.

Let's label a couple of angles so that we can talk about them more clearly.

$x=112^{\circ} \quad x$ and the 112° angle are vertical angles and are therefore congruent.
$y=112^{\circ} \quad y$ is marked congruent to x, so it must equal the same degree measure.
$\boldsymbol{a}=6 \mathbf{8 8}^{\circ} \quad a$ and y are a linear pair of angles and must add to $180^{\circ}(a+112=180)$.
$\boldsymbol{b}=\mathbf{1 1 2}^{\circ} \quad y$ and b are vertical angles and are therefore congruent.
$\boldsymbol{c}=\mathbf{6 8}^{\circ} \quad c$ and a are vertical angles and are therefore congruent.

Example 2: Find each lettered angle measure without a protractor.

$\boldsymbol{a}=127^{\circ} \quad a$, the 15° angle and the 38° angles are supplementary because together they form a line. So, they must add to 180°.

$$
\begin{gathered}
a+15+38=180 \\
a+53=180
\end{gathered}
$$

Example 3: Find each lettered angle measure without a protractor.

Let's label a couple of angles so that we can talk about them more clearly.

a is a vertical angle to y, so those two must be congruent. y is marked congruent to x, therefore a, x and y are all congruent to each other and have the same measure.
$\boldsymbol{a}=35^{\circ} \quad a, x$, the 70° angle and the 40° angle are supplementary because together they form a line. So, they must add to 180°.

$$
\begin{array}{cl}
a+x+70+40=180 \\
a+x+110=180 & \text { Since } x \text { and } a \text { have the same } \\
2 a+110=180 & \text { measure, we can say that } a+ \\
2 a=70 & x \text { is the same as having } 2 a .
\end{array}
$$

$\boldsymbol{b}=4 \mathbf{0}^{\circ} \quad$ The 40° angle and b are vertical angles and are therefore congruent.
$\boldsymbol{c}=35^{\circ} \quad c$ and x are vertical angles and are therefore congruent. We established that x has the same measure as a.
$\boldsymbol{d}=70^{\circ} \quad d$ and the 70° angle are vertical angles and are therefore congruent.

Example 4: Find each lettered angle measure without a protractor.

$\boldsymbol{a}=\mathbf{9 0 ^ { \circ }} \quad a$ and the right angle $\left(90^{\circ}\right)$ are a linear pair of angles and must add to 180°.
$\boldsymbol{b}=\mathbf{9 0}^{\circ} \quad b$ and the right angle are vertical angles and are therefore congruent.
$\boldsymbol{c}=42^{\circ} \quad c$ and the 138° angle are a linear pair of angles and must add to 180°.
$\boldsymbol{d}=48^{\circ} \quad d$ and the 132° angle are a linear pair of angles and must add to 180°.
$\boldsymbol{e}=132^{\circ} \quad e$ and the 132° angle are vertical angles and are congruent.

Example 5: Find each lettered angle measure without a protractor.

$\boldsymbol{a}=\mathbf{2 0} \quad a$ and the 70° angle are a complementary pair of angles (notice the right angle marking that passes through a and the 70° angle) and must add to 90°.
$\boldsymbol{b}=\mathbf{7 0}^{\circ} \quad b$ and a are a complementary pair of angles (notice the right angle marking that passes through a and b) and must add to 90°.
$\boldsymbol{c}=\mathbf{2 0} \quad c, b, a$ and the 70° angle are supplementary because they form a line when all combined together. So, they must add to 180°.
$\boldsymbol{d}=70^{\circ} \quad d$ and the 70° angle are vertical angles and are congruent.
$\boldsymbol{e}=\mathbf{1 1 0}^{\circ} \quad e$ and d are a linear pair of angles and must add to 180°.

Example 6: Find each lettered angle measure without a protractor.

$\boldsymbol{a}=7 \mathbf{0}^{\circ} \quad a$ and the 110° angle are a linear pair of angles and must add to 180°.
$\boldsymbol{b}=55^{\circ} \quad c, b$, and the 100° angle are supplementary because they form a line when all combined together. So, they must add to 180°. Find the measure of c first, and then calculate b.
$\boldsymbol{c}=\mathbf{2 5} \quad$ 和 \quad and the 25° angle are vertical angles and are congruent.

Example 7: Tell whether each statement is always (A), sometimes (S), or never (N) true.

\qquad The sum of the measures of two acute angles equals the measure of an obtuse angle.

The key in a problem like this is to try some examples. Acute angles are less than 90°. So, if I think about $15^{\circ}+36^{\circ}=51^{\circ}$, I have two acute angles that add to another acute angle. So, we know that this statement is not "always true". Now we must decide between sometimes or never true. So, I want to see if I can think of an example where two acute angles would equal the measure of an obtuse angle. $50^{\circ}+51^{\circ}=101^{\circ}$. Since I can think of an example where the statement is true, it cannot be "never true". Therefore, our answer is (S), sometimes true.

Example 8: Tell whether each statement is always (A), sometimes (S), or never (N) true.
\qquad If two angles form a linear pair, then they are complementary.

A linear pair of angles form a line and add to 180°. A complementary pair of angles form a right angle and add to 90°. Since the two things are not the same, our answer is (N), never true.

Example 9: Fill in each blank to make a true statement.

If one angle of a linear pair is obtuse, then the other is \qquad .

A linear pair of angles form a line and add to 180°. An obtuse angle measures more than 90°. If you think about subtracting a number larger than 90° from 180°, you will be left with a value that is less than 90°, which is the definition of an acute angle.
acute

Example 10: Fill in each blank to make a true statement.

If $\angle A \cong \angle B$ and the supplement of $\angle B$ has measure 22°, then $m \angle A=$ \qquad .
$\angle A \cong \angle B$ means that those angles have the same measure. A supplement means that that angles are supplementary and add to 180°. So, $m \angle B+22^{\circ}=180^{\circ}$. By solving, we find that $m \angle B=$ 158°. Since we established that $\angle A \cong \angle B$, then $m \angle A=m \angle B$.

$m \angle A=158^{\circ}$

Example 11: Fill in each blank to make a true statement.

If $\angle P$ is a right angle and $\angle P$ and $\angle Q$ form a linear pair, then $m \angle Q$ is \qquad .
$\angle P$ is a right angle, so $m \angle P=90^{\circ}$. A linear pair of angles form a line and add to 180°. So, $m \angle P+m \angle Q=180^{\circ}$. Since we know $m \angle P=90^{\circ}$, we can write $90^{\circ}+m \angle Q=180^{\circ}$. By solving, we find that $m \angle Q=90^{\circ}$.

90°

Example 12: Fill in each blank to make a true statement.

If $\angle S$ and $\angle T$ are complementary and $\angle T$ and $\angle U$ are supplementary, then $\angle U$ is
a(n) \qquad angle.

A complementary pair of angles form a right angle and add to 90°, so $m \angle S+m \angle T=90^{\circ}$. Two angles can only be complementary if they are each acute. A supplementary pair of angles add to 180°, so $m \angle T+m \angle U=180^{\circ}$. Since we know $\angle P$ is acute, that means $\angle U$ must be obtuse.

obtuse

