Order of Operations Notes

The order of operations is the rule that lets you know which operations to perform first in numerical expressions.
© Grouping symbols (Parentheses) () or []
© Powers (Exponents)
x^{n}
© Multiply and Divide

- \div
from left to right
O Add and Subtract
+ from left to right

Example 1: Evaluate Expressions

$15 \div 3 \cdot 6-4^{2}$
$15 \div 3 \cdot 6-16$
$5 \cdot 6-16$
$30-16$

14

Example 2: Evaluate Expressions

$2\left[5+(30 \div 6)^{2}\right]$

Since there are no parentheses or brackets, we will evaluate the exponent first.
**Remember that 4^{2} means $4 \cdot 4$ not $4 \cdot 2$.
Evaluate multiplication and division as they occur from left to right. That means that we may complete division before multiplication if it occurs first as we move from left to right through the expression.

In this case, the $15 \div 3$ is the left-most operation involving multiplication or division so we will evaluate that first.
$5 \cdot 6$ now becomes the left-most operation involving multiplication or division, so we evaluate that.

Since subtraction is the only operation left, we will evaluate the subtraction.
**This is our solution.

When multiple grouping symbols exist, start with the innermost set, in this case the $30 \div 6$.

$2\left[5+5^{2}\right]$	Now, we evaluate the remaining grouping symbol using the order of operations on the operations inside the grouping symbol. So, we will calculate 5^{2}
$2[5+25]$	The only operation remaining inside the grouping symbol is addition.
2[30]	When no operation is explicitly stated between a number and a grouping symbol, it indicates multiplication. So, $2[30]=2 \cdot 30$.
60	**This is our solution.
Example 3: Evaluate Expressions Involving Substitution	
$a^{2}-\left(b^{3}-4 c\right)$ where $a=7, b=3$, and $c=5$	
	The first step is always to substitute numbers in for variables.
	**Remember that a number and letter that a right next to each other with no operation between them is an implied multiplication
$7^{2}-\left(3^{3}-4 \cdot 5\right)$	Evaluate the expression inside the parentheses using the order of operations. The exponent needs to be evaluated first.
	**Remember that 3^{3} means $3 \cdot 3 \cdot 3 \underline{\text { not }} 3 \cdot 3$.
$7^{2}-(27-4 \cdot 5)$	The next operation in our order of operations I multiplication/division. So, we will evaluate the multiplication.
$7^{2}-(27-20)$	The only operation remaining in the parentheses is subtraction, so that can be evaluated.
$7^{2}-7$	Now that the grouping symbols have been evaluated, we can start at evaluating exponents again.
49-7	Since subtraction is the only operation left, we will evaluate the subtraction.
42	**This is our solution.

Example 4: Evaluate an Expression

$30-14 \div 2$	Evaluate division first.
$30-7$	Evaluate subtraction.

23

Example 5: Evaluate an Expression

$5 \cdot 5-1 \cdot 3$	Evaluate left-most multiplication first.
$25-1 \cdot 3$	Evaluate remaining multiplication.
$25-3$	Evaluate subtraction.

22

Example 6: Evaluate an Expression
$6^{2}+8 \cdot 3+7 \quad$ Evaluate exponent.
$36+8 \cdot 3+7$
Evaluate multiplication.
$36+24+7$
Evaluate left-most addition first.
$60+7$
Evaluate addition.
67

Example 7: Evaluate an Expression
$(4+6) 7$
(10)7

Evaluate addition inside parentheses.
Evaluate multiplication. (Remember that no explicit operation between a number and a parenthesis indicates multiplication).

70

Example 8: Evaluate an Expression
$50-(15+9) \quad$ Evaluate addition inside parentheses.
50-24
Evaluate subtraction.

Example 9: Evaluate an Expression

$\left[8(2)-4^{2}\right]+7(4)$	Evaluate exponent inside grouping symbols.
$[8(2)-16]+7(4)$	Evaluate multiplication inside grouping symbols.
$[16-16]+7(4)$	Evaluate subtraction inside grouping symbols.
$0+7(4)$	Evaluate multiplication.
$0+28$	Evaluate addition.

Example 10: Evaluate an Expression
$\frac{11-8}{1+7 \cdot 2}$
$\frac{3}{1+7 \cdot 2}$
$\frac{3}{1+14}$
$\frac{3}{15}$
$\frac{1}{5}$
**In a problem like this, we will evaluate the top and bottom separately. So, I will start with the numerator and then evaluate the denominator.

Evaluate subtraction in numerator.
Evaluate multiplication in denominator.
Evaluate addition in denominator.
Simplify fraction.
**We know the answer will be fractional because the denominator is larger than the numerator.

Example 11: Evaluate an Expression
$\frac{(4 \cdot 3)^{2}}{9+3}$
$\frac{12^{2}}{9+3}$
$\frac{144}{9+3}$
$\frac{144}{12}$
12

Evaluate multiplication in grouping symbols in numerator.
Evaluate exponent in numerator.
Evaluate addition in denominator.
Divide numerator and denominator.
**We can divide these because the numerator is larger than the denominator.

Example 12: Evaluate an Expression
$\frac{3+2^{3}}{5^{2}(6)}$
Evaluate exponent in numerator.
$\frac{3+8}{5^{2}(6)}$
Evaluate addition in numerator.
$\frac{11}{5^{2}(6)}$
$\frac{11}{25(6)}$
Evaluate exponent in denominator.
Evaluate multiplication in denominator.
$\frac{11}{150}$
**We cannot simplify this fraction.

Example 13: Evaluate an Expression Involving Substitution
$8 b-a$ where $a=4, b=6$, and $c=8$
The first step is always to substitute numbers in for variables.
**Remember that a number and letter that a right next to each other with no operation between them is an implied multiplication

8(6) - 4
Evaluate multiplication.
48-4
Evaluate subtraction.
44

Example 14: Evaluate an Expression Involving Substitution
$2 a+\left(b^{2} \div 3\right)$ where $a=4, b=6$, and $c=8$
Substitute numbers in for variables.
$2(4)+\left(6^{2} \div 3\right)$
Evaluate exponent inside grouping symbols.
$2(4)+(36 \div 3)$
Evaluate division inside grouping symbols.
$2(4)+12$
Evaluate multiplication.
$8+12$
Evaluate addition.

Example 15: Evaluate an Expression Involving Substitution
$\frac{b(9-c)}{a^{2}}$ where $a=4, b=6$, and $c=8$
Substitute numbers in for variables.
$\frac{6(9-8)}{4^{2}}$
$\frac{6(1)}{4^{2}}$
$\frac{6}{4^{2}}$
$\frac{6}{16}$
$\frac{3}{8}$

Evaluate subtraction inside grouping symbols in numerator.
Evaluate multiplication in numerator.
Evaluate exponent in denominator
Simplify fraction.

