Order of Operations Notes

The **order of operations** is the rule that lets you know which operations to perform first in numerical expressions.

۲	Grouping symbols (Parentheses)	() or []
۲	Powers (Exponents)	x ⁿ
۲	Multiply and Divide	· ÷
	from left to right	
۲	Add and Subtract	+ -
	from left to right	

Example 1: Evaluate Expressions

$15 \div 3 \cdot 6 - 4^2$	Since there are no parentheses or brackets, we will evaluate the exponent first.
	**Remember that 4^2 means $4 \cdot 4$ <u><i>not</i></u> $4 \cdot 2$.
$15 \div 3 \cdot 6 - 16$	Evaluate multiplication and division <i>as they occur from left to right</i> . That means that we may complete division before multiplication if it occurs first as we move from left to right through the expression.
	In this case, the $15 \div 3$ is the left-most operation involving multiplication or division so we will evaluate that first.
5 · 6 - 16	$5 \cdot 6$ now becomes the left-most operation involving multiplication or division, so we evaluate that.
30 – 16	Since subtraction is the only operation left, we will evaluate the subtraction.
14	** This is our solution.

Example 2: Evaluate Expressions

$2[5+(30\div 6)^2]$	When multiple grouping symbols exist, start with the
	innermost set, in this case the $30 \div 6$.

2[5 + 5 ²]	Now, we evaluate the remaining grouping symbol using the order of operations on the operations inside the grouping symbol. So, we will calculate 5^2
2[5 + 25]	The only operation remaining inside the grouping symbol is addition.
2[30]	When no operation is explicitly stated between a number and a grouping symbol, it indicates multiplication. So, $2[30] = 2 \cdot 30$.
60	**This is our solution.

Example 3: Evaluate Expressions Involving Substitution

$a^2 - (b^3 - 4c)$ where $a = 7, b = 3$, and $c = 5$		
	The first step is always to substitute numbers in for variables.	
	**Remember that a number and letter that a right next to each other with no operation between them is an implied multiplication	
$7^2 - (3^3 - 4 \cdot 5)$	Evaluate the expression inside the parentheses using the order of operations. The exponent needs to be evaluated first.	
	**Remember that 3^3 means $3 \cdot 3 \cdot 3 \underline{not} 3 \cdot 3$.	
$7^2 - (27 - 4 \cdot 5)$	The next operation in our order of operations I multiplication/division. So, we will evaluate the multiplication.	
$7^2 - (27 - 20)$	The only operation remaining in the parentheses is subtraction, so that can be evaluated.	
$7^2 - 7$	Now that the grouping symbols have been evaluated, we can start at evaluating exponents again.	
49 – 7	Since subtraction is the only operation left, we will evaluate the subtraction.	
42	**This is our solution.	

Example 4: Evaluate an Expression

$30 - 14 \div 2$	Evaluate division first.
30 – 7	Evaluate subtraction.
23	

Example 5: Evaluate an Expression

$5 \cdot 5 - 1 \cdot 3$	Evaluate left-most multiplication first.
$25 - 1 \cdot 3$	Evaluate remaining multiplication.
25 – 3	Evaluate subtraction.
22	

Example 6: Evaluate an Expression

$6^2 + 8 \cdot 3 + 7$	Evaluate exponent.
$36 + 8 \cdot 3 + 7$	Evaluate multiplication.
36 + 24 + 7	Evaluate left-most addition first.
60 + 7	Evaluate addition.
67	

Example 7: Evaluate an Expression

(4+6)7	Evaluate addition inside parentheses.
(10)7	Evaluate multiplication. (Remember that no explicit operation between a number and a parenthesis indicates multiplication).

70

Example 8: Evaluate an Expression

50 - (15 + 9)	Evaluate addition inside parentheses.
50 - 24	Evaluate subtraction.
26	

Example 9: Evaluate an Expression

$[8(2) - 4^2] + 7(4)$	Evaluate exponent inside grouping symbols.
[8(2) - 16] + 7(4)	Evaluate multiplication inside grouping symbols.
[16 - 16] + 7(4)	Evaluate subtraction inside grouping symbols.
0 + 7(4)	Evaluate multiplication.
0 + 28	Evaluate addition.
28	

Example 10: Evaluate an Expression

$\frac{11-8}{1+7\cdot 2}$	**In a problem like this, we will evaluate the top and bottom separately. So, I will start with the numerator and then evaluate the denominator.
	Evaluate subtraction in numerator.
$\frac{3}{1+7\cdot 2}$	Evaluate multiplication in denominator.
$\frac{3}{1+14}$	Evaluate addition in denominator.
<u>3</u> 15	Simplify fraction.
$\frac{1}{5}$	**We know the answer will be fractional because the denominator is larger than the numerator.

|--|

$\frac{(4\cdot3)^2}{9+3}$	Evaluate multiplication in grouping symbols in numerator.
$\frac{12^2}{9+3}$	Evaluate exponent in numerator.
<u>144</u> 9+3	Evaluate addition in denominator.
<u>144</u> 12	Divide numerator and denominator.
12	**We can divide these because the numerator is larger than the denominator.

Example 12: Evaluate an Expression

$\frac{3+2^3}{5^2(6)}$	Evaluate exponent in numerator.	
$\frac{3+8}{5^2(6)}$	Evaluate addition in numerator.	
$\frac{11}{5^2(6)}$	Evaluate exponent in denominator.	
$\frac{11}{25(6)}$	Evaluate multiplication in denominator.	
<u>11</u> 150	**We cannot simplify this fraction.	

Example 13: Evaluate an Expression Involving Substitution

8b - a where $a = 4, b = 6$, and $c = 8$			
	The first step is always to substitute numbers in for variables.		
	**Remember that a number and letter that a right next to each other with no operation between them is an implied multiplication		
8(6) - 4	Evaluate multiplication.		
48 – 4	Evaluate subtraction.		
44			

Example 14: Evaluate an Expression Involving Substitution

 $2a + (b^2 \div 3)$ where a = 4, b = 6, and c = 8

	Substitute numbers in for variables.
$2(4) + (6^2 \div 3)$	Evaluate exponent inside grouping symbols.
$2(4) + (36 \div 3)$	Evaluate division inside grouping symbols.
2(4) + 12	Evaluate multiplication.
8 + 12	Evaluate addition.
20	

Example 15:	Evaluate an Ex	pression Involving	g Substitution

 $\frac{b(9-c)}{a^2}$ where a = 4, b = 6, and c = 8Substitute numbers in for variables. $\frac{6(9-8)}{4^2}$ $\frac{6(1)}{4^2}$ $\frac{6}{4^2}$ $\frac{6}{4^2}$ $\frac{6}{16}$ $\frac{3}{8}$