Lesson 11.3 - Indirect Measurement with Similar Triangles

1. Ashton stands 1.5 m from a mirror that is 2.0 m from her principal's feet. If Ashton looks into the mirror, she can see the top of her principal's head. Ashton is 1.3 m tall. How tall is her principal?

$$
\begin{gathered}
\frac{2.0}{1.5}=1 \frac{1}{3} \\
1.3 \cdot 1 \frac{1}{3} \approx 1.7
\end{gathered}
$$

The principal is about 1.7 m tall.
2. At a certain time of day, a 6 -foot man casts a 4 -foot shadow. At the same time of day, how tall is a tree that casts an 18 -foot shadow?

$$
\begin{gathered}
\frac{18}{4}=4.5 \\
6 \cdot 4.5=27
\end{gathered}
$$

The tree is 27 feet tall.
3. David is 5 ft 8 in . tall and wants to find the height of an oak tree in his front yard. He walks along the shadow of the tree until his head is in a position where the end of his shadow exactly overlaps the end of the tree's shadow. He is now 11 ft 3 in . from the foot of the tree and 8 ft 6 in . from the end of the shadows. How tall is the oak tree?

$$
\begin{gathered}
\frac{19 \frac{3}{4}}{8 \frac{1}{2}}=2 \frac{11}{34} \\
5 \frac{2}{3} \cdot 2 \frac{11}{34}=13 \frac{1}{6} \\
\frac{1}{6} \cdot 12=2
\end{gathered}
$$

The tree is 13 feet 2 inches tall.

