Lesson 10.7 - Solving Volume Problems

Example 1:

A triangular pyramid has a volume of $180 \mathrm{~cm}^{3}$ and a height of 12 cm . Find the length of a side of the triangular base if the triangle's height from that side is 6 cm .
$V=\frac{1}{3} B H \quad * *$ Pyramid volume formula
$180=\frac{1}{3}(B)(12)$
$180=4 B$
$45=B \quad * *$ This is the area of the base, so now we need an area formula
$A=\frac{1}{2} b h$
$45=\frac{1}{2}(b)(6)$
$45=3 b$
$15=b$

The side of the triangle is $\mathbf{1 5} \mathbf{~ c m}$ long.

Example 2:

A trapezoidal pyramid has a volume of $3168 \mathrm{~cm}^{3}$, and its height is 36 cm . The length of the two bases of the trapezoidal base are 20 cm and 28 cm . What is the height of the trapezoidal base?
$V=\frac{1}{3} B H$
$3168=\frac{1}{3}(B)(36)$
$3168=12 B$
$264=B$
$A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$
$264=\frac{1}{2}(20+28) h$
**Pyramid volume formula
**This is the area of the base, so now we need an area formula
**The base is a trapezoid, so we will use the trapezoid area formula
$264=\frac{1}{2}(48) h$
$264=24 h$
$11=h$
The height of the trapezoid is 11 cm .

Example 3:

The volume of a cylinder is $200 \pi \mathrm{~cm}^{3}$. Find the radius of the base if the cylinder has a height of 8 cm .
$V=B H$
$200 \pi=B(8)$
$25 \pi=B$
$A=\pi r^{2}$
$25 \pi=\pi r^{2}$
$25=r^{2}$
$\sqrt{25}=r$
$5=r$
The radius of the cylinder is 5 cm .

Example 4:

A cone has volume $108 \pi \mathrm{~cm}^{3}$. Find the radius of the base if the cone has a height of 16 cm .
$V=\frac{1}{3} B H \quad * *$ Cone volume formula
$108 \pi=\frac{1}{3}(B)(16)$
$108 \pi=5 \frac{1}{3} B$
$20 \frac{1}{4} \pi=B$
$A=\pi r^{2}$
**This is the area of the base, so now we need an area formula
**The base is a circle, so we will use the circle area formula
$20 \frac{1}{4} \pi=\pi r^{2}$
$20 \frac{1}{4}=r^{2}$
$\sqrt{20 \frac{1}{4}}=r$
$4.55=r$
The radius of the cone is 4.5 cm .

Example 5:

$V=864 \pi \mathrm{~cm}^{3}$.
$r=$ \qquad

If we had an entire sphere, the formula would be $V=\frac{4}{3} \pi r^{3}$. Half of a sphere (a hemisphere) would be $V=\frac{1}{2}\left(\frac{4}{3} \pi r^{3}\right)$. Since we only want part of a hemisphere, we need to multiply the hemisphere formula by the number of degrees out of 360 that we want to keep.
$V=\frac{270}{360}\left(\frac{1}{2}\left(\frac{4}{3} \pi r^{3}\right)\right)$
If we multiply all three fractions $\frac{270}{360} \cdot \frac{1}{2} \cdot \frac{4}{3}$, we get $\frac{1}{2}$. So, let's simplify our formula.
$V=\frac{1}{2} \pi r^{3}$
$864 \pi=\frac{1}{2} \pi r^{3}$
$864=\frac{1}{2} r^{3}$
$1728=r^{3}$

$\sqrt[3]{1728}=r \quad$$* *$ Since we are getting rid of a power of three, we will take a third root.
$12=r$

The radius of the slice of the sphere is $\mathbf{1 2 ~ c m . ~}$

