Lesson 10.7 – Solving Volume Problems

Example 1:

A triangular pyramid has a volume of 180 cm^3 and a height of 12 cm. Find the length of a side of the triangular base if the triangle's height from that side is 6 cm.

$V = \frac{1}{3}BH$	**Pyramid volume formula
$180 = \frac{1}{3}(B)(12)$	
180 = 4B	
45 = B	**This is the area of the base, so now we need an area formula
$A = \frac{1}{2}bh$	**The base is a triangle, so we will use the triangle area formula
$45 = \frac{1}{2}(b)(6)$	
45 = 3b	
15 = b	

The side of the triangle is 15 cm long.

Example 2:

A trapezoidal pyramid has a volume of 3168 cm³, and its height is 36 cm. The length of the two bases of the trapezoidal base are 20 cm and 28 cm. What is the height of the trapezoidal base?

 $V = \frac{1}{3}BH$ **Pyramid volume formula $3168 = \frac{1}{3}(B)(36)$ 3168 = 12B264 = B**This is the area of the base, so now we need an area formula $A = \frac{1}{2}(b_1 + b_2)h$ **The base is a trapezoid, so we will use the trapezoid area formula $264 = \frac{1}{2}(20 + 28)h$

$$264 = \frac{1}{2}(48)h$$
$$264 = 24h$$
$$11 = h$$

The height of the trapezoid is 11 cm.

Example 3:

The volume of a cylinder is 200π cm³. Find the radius of the base if the cylinder has a height of 8 cm.

V = BH	**Cylinder volume formula
$200\pi = B(8)$	
$25\pi = B$	**This is the area of the base, so now we need an area formula
$A = \pi r^2$	**The base is a circle, so we will use the circle area formula
$25\pi = \pi r^2$	
$25 = r^2$	
$\sqrt{25} = r$	
5 = r	

The radius of the cylinder is 5 cm.

Example 4:

A cone has volume 108π cm³. Find the radius of the base if the cone has a height of 16 cm.

$V = \frac{1}{3}BH$	**Cone volume formula
$108\pi = \frac{1}{3}(B)(16)$	
$108\pi = 5\frac{1}{3}B$	
$20\frac{1}{4}\pi = B$	**This is the area of the base, so now we need an area formula
$A = \pi r^2$	**The base is a circle, so we will use the circle area formula

$$20\frac{1}{4}\pi = \pi r^2$$
$$20\frac{1}{4} = r^2$$
$$\sqrt{20\frac{1}{4}} = r$$

4.55 = r

The radius of the cone is 4.5 cm.

Example 5:

 $V = 864\pi \text{ cm}^3$.

r =_____

If we had an entire sphere, the formula would be $V = \frac{4}{3}\pi r^3$. Half of a sphere (a hemisphere) would be $V = \frac{1}{2} \left(\frac{4}{3}\pi r^3\right)$. Since we only want part of a hemisphere, we need to multiply the hemisphere formula by the number of degrees out of 360 that we want to keep.

$$V = \frac{270}{360} \left(\frac{1}{2} \left(\frac{4}{3} \pi r^3 \right) \right)$$

If we multiply all three fractions $\frac{270}{360} \cdot \frac{1}{2} \cdot \frac{4}{3}$, we get $\frac{1}{2}$. So, let's simplify our formula.

 $V = \frac{1}{2}\pi r^3$ $864\pi = \frac{1}{2}\pi r^3$ $864 = \frac{1}{2}r^3$ $1728 = r^3$

$\sqrt[3]{1728} = r$	**Since we are getting rid of a power of three, we will take a third
	root.

12 = r

The radius of the slice of the sphere is 12 cm.