Lesson 10.3 - Volume of Pyramids and Cones

Pyramid-Cone Volume Conjecture:

If B is the area of the base of a pyramid or cone and H is the height of the solid, then the formula for the volume is $V=\frac{1}{3} B H$.

Important Area Formulas that you will need:
Rectangle: $A=b h$
Parallelogram: $A=b h$
Triangle: $A=\frac{1}{2} b h$
Trapezoid: $A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$
Circle: $A=\pi r^{2}$
Sector: $A=\frac{a}{360} \pi r^{2}$
Regular Polygon: $A=\frac{1}{2}$ asn

Example 1: Volume of a Cone

The base is a circle.
$B=\pi r^{2}$
$B=\pi(6)^{2}$
$B=36 \pi$
$V=\frac{1}{3} B H$
$V=\frac{1}{3}(36 \pi)(12) \quad * *$ To calculate this, we can multiply 12 and 36 , then divide by 3 .
$V=144 \pi$
The volume of the cone is $\mathbf{1 4 4 \pi}$ units $^{\mathbf{3}}$, or about $\mathbf{4 5 2 . 3 9}$ units $^{\mathbf{3}}$.

Example 2: Volume of a Right Triangular Pyramid

The base is a triangle. We need to know the missing side of the triangle, so we will use the Pythagorean Theorem
$a^{2}+b^{2}=c^{2}$
$a^{2}+8^{2}=10^{2}$
$a^{2}+64=100$
$-64 \quad-64$
$a^{2}=36$
$\sqrt{a^{2}}=\sqrt{36}$
$a=6$
The base is a triangle.
$B=\frac{1}{2} b h$
$B=\frac{1}{2}(6)(8)$
$B=24$
$V=\frac{1}{3} B H$
$V=\frac{1}{3}(24)(9)$
$V=72$
The volume of the right triangular pyramid is $\mathbf{7 2} \mathbf{i n}^{3}$.

Example 3: Volume of a Rectangular Pyramid

The base is a rectangle.
$B=b h$
$B=(8)(5)$
$B=40$
$V=\frac{1}{3} B H$
$V=\frac{1}{3}(40)(6)$
$V=80$
The volume of the rectangular pyramid is $\mathbf{8 0}$ units 3.

Example 4: Volume of a Semicircular Cone

The base is a semicircle (half of a circle). The diameter of the semicircle is 14 units. So, the radius of the semicircle is 7 units.
$B=\frac{1}{2} \pi r^{2}$
$B=\frac{1}{2} \pi(7)^{2}$
$B=24.5 \pi$
To find volume, we need height of the figure. We can use the Pythagorean Theorem on the right triangle that uses a radius (7) as one of the legs and 25 as the hypotenuse.
$a^{2}+b^{2}=c^{2}$
$7^{2}+b^{2}=25^{2}$
$49+b^{2}=625$
$-49 \quad-49$
$b^{2}=576$
$\sqrt{b^{2}}=\sqrt{576}$
$b=24 \quad{ }^{* *}$ So, the height of the figure is 24 units.
$V=\frac{1}{3} B H$
$V=\frac{1}{3}(24.5 \pi)(24)$
$V=196 \pi$
The volume of the semicircular cone is $\mathbf{1 9 6 \pi}$ units $^{\mathbf{3}}$, or about 615.75 units $^{\mathbf{3}}$.

