Lesson 1.7 - Circles

Circle - A circle is the set of all points in a plane at a given distance (called the radius) from a given point (called the center of the circle).

Chord - A chord is a line segment whose endpoints lie on the circle.

Chords: $\overline{A B}, \overline{C D}, \overline{E F}, \overline{G H}$, and $\overline{I J}$

Diameter - A diameter is a chord that passes through the center of the circle.

**A diameter is the longest chord possible in a circle.

Tangent - A tangent is a line that intersects the circle only once.

Point of tangency - The point of tangency is the point where the line intersects the circle. B, C, and F are all points of tangency.

Congruent Circles - If two or more circles have the same length radius they are congruent circles.

$\overline{\mathrm{AB}} \cong \overline{\mathrm{CD}}$

Concentric Circles - If two or more circles share the same center they are concentric circles.

Arc - An arc is two points on a circle and the continuous portion of the circle between the two endpoints.

Semicircle - A semicircle is an arc whose endpoints are the endpoints of a diameter. Semicircles are named using three points and the order is specific.

Minor Arc - A minor arc is an arc of the circle that is smaller than a semicircle. Minor arcs need only two points for naming. Order is not specific.

Major Arc - A major arc is an arc that is larger than a semicircle. Major arcs are named using three points and the order is specific.

Central Angle - A central angle is an angle whose vertex is the center of the circle and whose sides pass through the circle.

CONJECTURE:

Arc Measure - The measure of an arc is the same as the measure of the central angle that forms the arc.

Example 1: Use the figure to complete
$m \overparen{Q R}=$ \qquad

The measure of the arc is equal to the measure of the central angle that forms it. So, the measure of $\overparen{Q R}$ is the same as $m \angle Q O R$ which is 48°.
 $m \overparen{Q R}=\underline{48^{\circ}}$

Example 2: Use the figure to complete
$m \overparen{P R}=$ \qquad

The measure of the arc is equal to the measure of the central angle that forms it. So, the measure of $\overparen{P R}$ is the same as $m \angle P O R$ which makes a linear pair with $\angle Q O R$. So, $m \angle P O R=180^{\circ}-48^{\circ}=132^{\circ}$.
 $m \overparen{P R}=$ \qquad

Example 3: Use the figure to complete
$m \overparen{P Q R}=$ \qquad

The measure of the arc is equal to the measure of the central angle that forms it. So, the measure of $\overparen{P Q R}$ is the same as $m \angle Q O R+m \angle P O R$.

We know that $m \angle P O R=180^{\circ}$ because it is a line. So, $180^{\circ}+48^{\circ}=228^{\circ}$.
 $m \overparen{P Q R}=$ \qquad

Example 4: Use the figure to complete
$m \overparen{Q P R}=$ \qquad

The measure of the arc is equal to the measure of the central angle that forms it. So, the measure of $\overparen{Q P R}$ is the entire circle except $m \angle Q O R$. So, $360^{\circ}-48^{\circ}=312^{\circ}$.

$m \overparen{Q P R}=$ \qquad

Example 5: Sketch, label, and mark the figure
Draw circle O with diameter $\overline{A B}$; radius $\overline{O C}$ with $\overline{O C} \perp \overline{A B} ; \overline{O D}$, the angle bisector of $\angle A O C$, with D on the circle; chords $\overline{A C}$ and $\overline{B C}$; and a tangent at D.

Let's start by drawing circle O with diameter $\overline{A B}$.

Add in radius $\overline{O C}$ with $\overline{O C} \perp \overline{A B}$. Make sure to mark the intersection of $\overline{O C}$ and $\overline{A B}$ with a right angle.

Add in $\overline{O D}$, the angle bisector of $\angle A O C$, with D on the circle. Make sure to mark the angle as a bisector.

Add in chords $\overline{A C}$ and $\overline{B C}$. Remember that you have to work with the points that are already in the figure.

Finally, add in a tangent at D.

Example 6: Construct arcs with each measure
Make an arc with measure 50°, an arc with measure 180°, and an arc with measure 290°.

Arc with measure 50^{90}

Arc with measure 50° :

Arc with measure 180^{100} yo

Arc with measure 290° ier $180^{\circ}+110^{\circ}$;

Arc with measure 180° :

Arc with measure 290°

