Name: \qquad
7)

8)

Draw and label each line segment.
9) $\overline{A B}$
10) $\overline{R S}$ with $R(0,3)$ and $S(-2,11)$

Use your ruler to draw each segment as accurately as you can. Label each segment.
11) $A B=4.5 \mathrm{~cm}$

Name each line segment.

12) $C D=3$ in.

Use your ruler to find the length of each line segment to the nearest tenth of a centimeter.
Write your answer in the form $m \overline{A B}=$ \qquad .
13) \qquad
14)

Complete.

15) Name each midpoint and the segment it bisects.

16) Draw two segments that have the same midpoint. Mark your drawing to show congruent segments.

Draw and label each ray.
21) $\overrightarrow{A B}$
22) $\overrightarrow{Y X}$
17) Draw and mark a figure in which M is the midpoint of $\overline{S T}, S P=P T$, and T is the midpoint of $\overline{P Q}$.

Complete.

23) Draw a plane containing four coplanar points A, B, C, and D, with exactly three collinear points A, B, and D.

Name each ray in two different ways.

18)

19)

20)

24) Given two points A and B, there is only one segment that you can name:
$\overline{A B}$. With three collinear points A, B, and C, there are three different segments that you can name:
$\overline{A B}, \overline{A C}$, and $\overline{B C}$. With five collinear points A, B, C, D, and E, how many different segments can you name?

Use the graph paper to plot each figure.

25) Draw $\overline{A B}$, where point A has coordinates $(4,0)$ and point B has coordinates $(2,-6)$.
26) Draw $\overrightarrow{O M}$ with endpoint $(0,0)$ that goes through $M(2,2)$.
27) Draw $\overleftrightarrow{C D}$ through points $C(-2,1)$ and $D(-2,-3)$.
28) If the signs of the coordinates of collinear points
$P(-6,-2), Q(-5,2)$, and $R(-4,6)$ are reversed, are the three new points still collinear? Draw a picture and explain why.

\qquad

29) Draw a segment with midpoint $N(-3,2)$. Label it $\overline{P Q}$.

