1) You are creating a box with a lid out of $1 / 4$ " birch plywood. The box is 4 feet by 3 feet and 2 feet tall. The density of birch plywood is $0.021 \mathrm{lbs} / \mathrm{in}^{3}$. How much will the finished box weigh?
$S A=2(4 \cdot 3)+2(3 \cdot 2)+2(4 \cdot 2)$
$S A=24+12+16$
$S A=52 f t^{2}$
Convert SA to square inches: $52 \cdot 144=7488 \mathrm{in}^{2}$
Volume of Material Used for Box $=7488 \cdot \frac{1}{4}=1872 \mathrm{in}^{3}$
Mass of Material $=1872 \mathrm{in}^{3} \cdot \frac{0.021 \mathrm{lbs}}{1 \mathrm{in}^{3}}=39.31 \mathrm{lbs}$
2) A 55 -gallon drum is 33 " tall and made out of 18 -gauge steel. The diameter of the steel drum is $23.5 "$. 18 -gauge steel is 0.05 " thick and steel weighs about $490 \mathrm{lbs} / \mathrm{ft}^{3}$. What is the weight of the empty drum?
$S A=2 \pi(11.75)(33)+2 \pi(11.75)^{2}$
$S A=2436.31+867.47$
$S A=3303.78 \mathrm{in}^{2}$
Volume of Material Used for Drum $=3303.78 \cdot 0.05=165.19 \mathrm{in}^{3}$
Convert Volume to cubic feet: $\frac{165.19}{1728}=0.096 \mathrm{ft}^{3}$
Mass of Material $=0.096 \mathrm{ft}^{3} \cdot \frac{490 \mathrm{lbs}}{1 \mathrm{ft}^{3}}=46.8 \mathrm{lbs}$
3) A plastic drum has a base diameter of 23.3 ". The drum is $34.8^{\prime \prime}$ tall. The plastic is 2.2 mm thick and weighs $51.6 \mathrm{lbs} / \mathrm{ft}^{3}$. Find the weight of the empty drum.
$S A=2 \pi(11.65)(34.8)+2 \pi(11.65)^{2}$
$S A=2547.33+852.77$
$S A=3400.1 \mathrm{in}^{2}$
Convert width of material to inches $=2.2 \mathrm{~mm} \cdot \frac{0.04 \text { inches }}{1 \mathrm{~mm}}=0.088 \mathrm{in}$
Volume of Material Used for Drum $=3400.1 \cdot 0.088=299.21 \mathrm{in}^{3}$
Convert Volume to cubic feet: $\frac{299.21}{1728}=0.173 f t^{3}$
Mass of Material $=0.173 \mathrm{ft}^{3} \cdot \frac{51.6 \mathrm{lbs}}{1 f t^{3}}=8.93 \mathrm{lbs}$
\qquad
4) The bag below has been designed to be constructed out of $1 / 16$ " nylon. Find the weight of the empty bag if nylon has a density of $0.041185 \mathrm{lbs} / \mathrm{in}^{3}$.
$S A=2 \pi(6)(24)+2 \pi(6)^{2}$
$S A=904.78+226.19$
$S A=1130.97 \mathrm{in}^{2}$
Volume of Material Used for Bag $=1130.97 \cdot \frac{1}{16}=70.69 \mathrm{in}^{3}$
Mass of Material $=70.69 \mathrm{in}^{3} \cdot \frac{0.041185 \mathrm{lbs}}{1 \mathrm{in}^{3}}=2.91 \mathrm{lbs}$

5) The box below is to be constructed out of $1 / 8$ " aluminum. Aluminum has a density of 2.7 $\mathrm{g} / \mathrm{cm}^{3}$. Find the weight of the empty box.

$S A=2(15 \cdot 15)+2(48 \cdot 15)+2(48 \cdot 15)$
$S A=450+1440+1440$
$S A=3330 \mathrm{in}^{2}$
Volume of Material Used for Box $=3330 \cdot \frac{1}{8}=416.25 \mathrm{in}^{3}$
Convert Volume to cubic feet: $\frac{416.25}{1728}=0.2409 f t^{3}$
Convert Density to $\mathrm{lbs} / \mathrm{ft}^{3}: \frac{2.7 \mathrm{~g}}{\mathrm{~cm}^{3}} \cdot \frac{0.0022 \mathrm{lb}}{1 \mathrm{~g}} \cdot \frac{1 \mathrm{~cm}^{3}}{0.061 \mathrm{in}^{3}} \cdot \frac{1728 \mathrm{in}^{3}}{1 \mathrm{ft}^{3}}=168.27 \mathrm{lb} / \mathrm{ft}^{3}$
Mass of Material $=0.2409 \mathrm{ft}^{3} \cdot \frac{168.27 \mathrm{lbs}}{1 f t^{3}}=40.54 \mathrm{lbs}$
