Density is the mass of the matter in a given volume.

Metal	Density
Aluminum	$2.81 \mathrm{~g} / \mathrm{cm}^{3}$
Copper	$8.97 \mathrm{~g} / \mathrm{cm}^{3}$
Lead	$11.30 \mathrm{~g} / \mathrm{cm}^{3}$
Platinum	$21.40 \mathrm{~g} / \mathrm{cm}^{3}$
Sodium	$0.97 \mathrm{~g} / \mathrm{cm}^{3}$
Gold	$19.30 \mathrm{~g} / \mathrm{cm}^{3}$

Material	Weight
Water	$63 \mathrm{lbs} / \mathrm{in}^{3}$

Example 1:

Find the mass of a solid cylinder of copper that has a height of 9 cm and a diameter of 6 cm .

We should start by drawing a picture of the cylinder:

$V=B H$

The base is a circle, so the area of the base (B) can be calculated using $A=\pi r^{2}$.
$A=\pi(3)^{2} \quad * *$ A circle with a $6-\mathrm{cm}$ diameter has a radius of half of 6, or 3 cm.
$A=9 \pi$
$B=9 \pi$
$V=(9 \pi)(9)$
$V \approx 254.47 \mathrm{~cm}^{3}$
density \cdot volume $=$ mass
The density of copper is $8.97 \mathrm{~g} / \mathrm{cm}^{3}$.
$\left(\frac{8.97 \mathrm{~g}}{\mathrm{~cm}^{3}}\right)\left(254.47 \mathrm{~cm}^{3}\right)=$ mass
$2,282.60 \mathrm{~g}=$ mass
The cylinder will have a mass of $\mathbf{2 , 2 8 2} \mathbf{6}$ grams.

Example 2:

Find the mass of a solid rectangular prism of lead with dimensions of 10 cm by 5 cm by 3 cm tall.

We should start by drawing a picture of the prism:
$V=B H$
The base is a rectangle, so the area of the base (B) can be calculated using $A=b h$.
$A=(5)(10)$
$A=50$
$B=50$
$V=(50)(3)$
$V=150 \mathrm{~cm}^{3}$
density \cdot volume $=$ mass
The density of lead is $11.30 \mathrm{~g} / \mathrm{cm}^{3}$.
$\left(\frac{11.30 \mathrm{~g}}{\mathrm{~cm}^{3}}\right)\left(150 \mathrm{~cm}^{3}\right)=$ mass
$1,695 \mathrm{~g}=$ mass
The prism will have a mass of $\mathbf{1 , 6 9 5}$ grams.

