

MetalDensityAluminum $2.81 \text{ g/cm}^3$ Copper $8.97 \text{ g/cm}^3$ Lead $11.30 \text{ g/cm}^3$ Platinum $21.40 \text{ g/cm}^3$ Sodium $0.97 \text{ g/cm}^3$ Gold $19.30 \text{ g/cm}^3$ 

| Material | Weight                 |
|----------|------------------------|
| Water    | 63 lbs/in <sup>3</sup> |

## Example 1:

Find the mass of a solid cylinder of copper that has a height of 9 cm and a diameter of 6 cm.



We should start by drawing a picture of the cylinder:

V = BH

The base is a circle, so the area of the base (B) can be calculated using  $A = \pi r^2$ .

 $A = \pi(3)^2$  \*\*A circle with a 6-cm diameter has a radius of half of 6, or 3 cm.  $A = 9\pi$  $B = 9\pi$ 

 $V = (9\pi)(9)$  $V \approx 254.47 \text{ cm}^3$ 

density  $\cdot$  volume = mass

The density of copper is 8.97 g/cm<sup>3</sup>.

$$\left(\frac{8.97g}{cm^3}\right)(254.47cm^3) = mass$$

$$2,282.60 \ g = mass$$

The cylinder will have a mass of **2,282.6 grams**.

## Example 2:

Find the mass of a solid rectangular prism of lead with dimensions of 10 cm by 5 cm by 3 cm tall.



We should start by drawing a picture of the prism:

V = BH

The base is a rectangle, so the area of the base (B) can be calculated using A = bh.

A = (5)(10) A = 50 B = 50V = (50)(3)  $V = 150 \text{ cm}^3$ 

density  $\cdot$  volume = mass

The density of lead is  $11.30 \text{ g/cm}^3$ .

$$\left(\frac{11.30g}{cm^3}\right)(150\ cm^3) = mass$$

1,695 g = mass

The prism will have a mass of **1,695 grams**.